
D
R

A
FT

TKS1 - An anti-forensic, two level, and iterated

key setup scheme

Clemens Fruhwirth <clemens@endorphin.org>

July 15, 2004

Abstract

This paper sketches the problems connected with usual hard disk encryp-

tion setups. It introduces the reader to PBKDF2, a password based key

derive function, which provides better resistance against brute force at-

tacks based on entropy weak user passwords. It proposes to use a two level

hierarchy of cryptographic keys to provide the ability to change passwords

and drafts solutions to the key storage problem arising when using two

levels of cryptography due to the fact, that given the abilities of recent

forensic data recovery methods, data can’t be destroyed on magnetic stor-

age media reliably.

The frowardness of many modern operating system to store data, like swap or
temporary files, on disk at will raises the question, if traces of sensitive data
ends up on solid storage media. As Peter Gutmann pointed out in his semi-
nal paper[2], several difficulties arise when sensitive data, written to temporary
storage, is expurgated. Instead of repressing the stubbornness of OS the ap-
proach of encrypting the whole hard disk seems to be tempting. This paper will
focus on the key management for the realtime disk cipher used for encrypting
the block device.

1 The dictionary attack

User suplied passwords have usually two unwanted properties. They are too
short and sometimes even based on dictionary words. Both emerge due to the
user’s preference for easy rememberable short passphrases. From a cryptogra-
phers point of view, the problem with short strings as well as English words is,
that they tremendously lack entropy. A password generated by the standard
Unix command mkpasswd will give you a 13 character random string where the
term “character” refers to a set of 64 symbols1. This yields 78 bits2of entropy.
Given this symbol set, the user would have to remember 42 random characters
to provide enough entropy to form a 256 bit key.

The usual passphrase length is nowhere around that, neither is it random
generated. Choosing a regular English word with length 10 will yield 12 bits
entropy3. The entropy gap to a 128 bit key or worse, a 256 bit key, is highly

1A-Z, a-z, 0-9, ’/’, ’.’
2
∏

13

1
26

31.2 bits per character

1

D
R

A
FT

visible. A potential attacker could easily traverse a dictionary instead of the
whole password domain. Even if these 10 characters are random generated,
the entropy would be 50 bits, when using 64 symbols/character. In 1999 dis-
tributed.net compromised a 56 bit DES key within 22 hours. So 10 characters
are not secure either.

As technology advances, larger key sizes become attackable by brute force
in less time. One might think one just has to raise the key size, and therefor
raise the length of the passphrase to be safe. Since technology advances much
faster than humans capability to remember arbitrary passwords do, the gap to
the feasibility of this attack becomes smaller everyday.

The following scheme will not improve this insufficient entropy and therefor
an insufficient attackable complexity, but it artificially hampers the computation
of a single brute force operation. A single brute force attack consists of setting
up the cipher with a passphrase to be attacked, computing the encryption of a
cipher block likely to contain known information and checking the result against
plausible outcomes. Since making the regular decryption slower is not desirable,
because it would also hamper the legitimate usage of the system, the item of
interest is the key setup phase.

By inserting a CPU intensive transformation into the key setup path the
single brute force operation can be made much more expensive to carry out
without imparing the regular use. Mathematically it’s a map of the given pass-
word to the key domain, which doesn’t need to be invertible. Hash functions
qualify best for this purpose, as they are well defined for variable sized input.
To make them CPU intensive, one can just iterate them for a number of times.
PBKDF2, standardized in RFC 2898 [1], is based on this idea.

A potential attacker would have to have access to a precomputed dictionary,
storing f(password) instead of password, to be unchallenged by this measure,
where f is the CPU intensive function. A complete enumeration of the pass-
word domain generated from by mkpasswd (of the size 278), would require 8
yottabytes4 storage, which might be achievable one day5. Therefor, instead of
utilizing a generic function, f(password), it’s advisable to make them depend
not only on the password, but also on a constant random value s, commonly
referred to as salt. By choosing s at the time of the initial creation of a cryp-
tography volume, an attacker would have to have a dictionary available, which
contains f(password, s) for all possible password and s, to be unchallenged.
By making the domain of s larger, the storage requirements of a precomputed
dictionary becomes larger as well. Since s doesn’t have to be secret, it can be
stored on disk and therefor it is relieved of any size constraints imposed by the
limited human’s ability to remember random content. The solution is quite sim-
ple, make s that large, that storaging a dictionary is unlike to become feasible
for the timespawn one would like to keep the data secret.

Further one has to make sure that by repeatedly applying f the codomain of
f does not degenerated into a smaller set of values. To prevent such drifts, the
function f should not simply iterate a hash function, but also compute a result
based on it’s intermediate values. XOR-ing the intermediate values together
should provide enough safety against this possible degeneration.6

4230 Petabytes
5Cryptographers tend to be satisfied only when the storage complexity exceeds 1078, the

approximate numbers of atoms in the universe.
6For a discussion of this subject see http://www.google.com/groups?threadm=3BC854A7.

2

D
R

A
FT

PBKDF2 implements these three key concepts: iterations, salt and degener-
ation countermeasures. Further PBKDF2 can generate an output of arbitrary
length by concatenating an “initial vector” to the salt, therefor altering all suc-
cessive computations. The following function F yields the i-th block derived
from P , the password, S, the salt, and c, the iteration depth. PRF is a pseudo-
random function, usually a hash function in a HMAC setup [3].

F (P, S, c, i) = U1 ⊕ U2 ⊕ . . . ⊕ Uc

U1 = PRF (P, S || INT (i)),

U2 = PRF (P, U1),

. . .

Uc = PRF (P, Uc−1)

The feasibility of attacking this scheme depends on the ratio of the user’s
CPU power to the processing power available to an attacker. The user can
always adjust the CPU intensity of the hash process to approximately take 5
seconds. That amount of time seems reasonable to wait for a password confir-
mation. If an attacker has the same amount of processing power at his disposal
as the user, he would require about 1016 years to enumerate the passphrase
domain generated by mkpasswd, assuming a single operation only consists of 5
seconds key setup time and the decryption time is marginal7. Even for com-
mercial entities information security requirement should not exceed a timespan
of 1000 years. Therefor an attacker must be 1013 times ahead of the user in
terms of processing power. The gap between ordinary workstations and super-
computer is far from being in magnitudes like 1:1013. As a little illustration, the
Earth Simulator Computer8 deployed in Japan can carry out 35 TFLOPS in
contrast to Pentium 4 which can compute about 0.5 GFLOPS. FLOPS are not
ideal for benchmarking actually processing power, however but it demonstrates
there is a gap of the magnitude of 1:70000 between regular user hardware and
supercomputers. So, the gap of 1:1013 is not likely to be filled, not even with
special manufactured hardware.

2 Two level encryption

In the event of password compromisation, for example by someone standing
behind the user while typing, it becomes evident, that it’s very unhandy to
re-encrypt the whole hard disk with a new passphrase9. The solution to this
is to build a cryptographic hierarchy. The hard disk will be encrypted with a
generated master key, which is in turn encrypted with a user supplied passphrase
and stored on disk. When the user wants to open his cryptographic storage,
the passphrase is entered and the master key is thus recovered and can be used
to decrypt the whole hard disk. In case of compromise, the master key can be

56005C4%40no.spam.please
7278keys ∗ 5seconds/key ∗ 3110400seconds

1year
8http://en.wikipedia.org/wiki/Earth_Simulator
9This can only be done when the master key itself has not been compromised.

3

D
R

A
FT

encrypted with a new passphrase and the instance of the master key encrypted
by the compromised key can be destroyed. The master key should never be
written to any storage media, it should only be kept in memory, or should even
be destroyed after the key setup of the underlaying cipher is completed.

3 Anti-forensic data storage

Hard disk have a long long memory. Even if you think data is gone, even if you
have overwritten the whole disk with zeros, even if you invoked the security-
erase ATA command of your IDE hard disk, data can be easily recovered, if not
special care is taken to destroy it properly. The two level encryption scheme,
which stores the encrypted master key on disk, must take extra percaution,
since data is not guaranteed to be ever erased. Bad block remapping of modern
firmwares supports data safety but weakens the opposite, data destruction.

If the probability p to destroy a certain block of data is 0 < p < 1, then
the probability that the block survives is of course 1 − p. Given a set of data
of the size l, the probability to destroy the whole block becomes worse since pl

becomes smaller as l becomes larger. But the probability that the whole block
survives, (1 − p)l, becomes smaller as well with an increasing l. If (1 − p)l is
becoming smaller, than 1 − (1 − p)l must become larger, which is exactly the
chance, that the whole block does not survive. The reader should notice the
subtile difference between “whole block is destroyed” and “whole block does not
survive”. The former means that all items are destroyed. The later means that
one data item or more is destroyed.

Usually one is not able to control p, but the size of the data set l is arbitrary.
By making l larger, one can make the chance of destroying at least one data
block arbitrary large. For instance, if the odds are against us and the hard disk
exhibits p = 0.01, we can almost reliable destroy a single data block in a 1000
item data set with a probability of 0.99995.

The remaining task is to make the destruction of a single data block crucial
for the usability of the whole data set. A key is usually just a single data item
with the length of 16 or 32 byte (128 bits or 256 bits). We will just treat the
master key, which should be made reliably purgeable, as data set from now on,
since this technique can be used for arbitrary data. The point is to distribute the
information of a single data item D uniformly to all data items of another data
set S, where “uniformly” refers to the property that any data item is equally
important to extract the information.

An easy approach is to create the interdependency for a data set S, S =
s1, s2, . . . sn, is by generating s1 . . . sn−1 random data items and computing sn so
that s1⊕s2⊕s3 . . .⊕sn = D (⊕ denotes the XOR operation). The reconstruction
is done by carring out the left-side of the equation, XOR-ing all data items
together. If one item si is missing, D can’t be reconstructed, since an arbitrary
si effects the entire D.

This scheme can be enhanced to include diffusion of information, so that
the k-th bit of an arbitrary si does not only affect the k-th bit of D but the
entire D. To achieve this diffusion, we insert a diffusion element in the chain of
XORs. A crytographic hash function can be used as such element, but since it
might not output sufficiently large data, it will be processed a few times with
an increasing number, similar to an initial vector, prepended to the complete

4

D
R

A
FT

dataset to produce enough data. As a hash function is usually required to be
non-invertible, we can not choose it’s output. Therefor, the last diffusion will
be omitted. This will degrade security slightly, so when computing destruction
probabilities the last element shall never be taken into account.

As we can destroy a single undeterminated data item quite easily as shown
in the previous paragraph, and as a single missing data item makes the base
information unrecoverable, data items can be made reliable erasable. A sample
implementation of this scheme is the AFsplitter, short for anti-forensic splitter,
which can be found under http://clemens.endorphin.org/AFsplitter. As
illustration, you can find the overall composition in Figure 1. H denotes the
diffusion element, which is likely to be a hash10 and Z denotes the zero vector.
In the splitting phase, s1 to sn−1 are random generated and the intermediate
result I is computed. Then sn computed as sn = D ⊕ I. When recovering the
base information, the whole chain is computed as shown resulting in D, the
original data item.

Z ⊕

s1

H ⊕

s2

H ⊕

s3

. . . H ⊕

sn−1

H ⊕

sn

D
I

Figure 1: AFsplitter

3.1 Choosing the size of the inflated information

As the diffusion element in our design will cause a bit error in the data storage
to have devastating effect on the output, we will focus on the probability of
destroying bits, or in other words producing bit errors. Given the probability
p that a bit is destroyed, 1 − p denotes the probability that a bit survives.
The probability, that a data set with l items, each item k bits long, survives,
is (1 − p)lk. Our aim is to make this probability equal to the probability of
guessing the master key of our datastore, which is 1

2k , where k denotes the key
size (in bits).

(1 − p)lk = (
1

2
)k

By applying ln to both sides and removing k from the equation, the following
form is derived.

l =
ln 2

ln(1 − p)
(1)

Note that l does not depend on the length of the key k. To give the reader a sense
for the magnitudes, selected values of p with the corresponding multiplication
factor l are presented in the following table,

10To construct enough data from a hash with fixed output size, hash
h(si||0), h(si||1), h(si||2) . . . until enough data is obtained

5

D
R

A
FT

p l (in bits)
0.05 13.5134
0.01 68.9676

0.001 692.801
0.0001 6931.13

4 Assembling TKS1

Enc. master key
Cipher

Salt Hash iteration rate

Passphrase
PBKDF2

Master key

Encrypted partition Recovered partition
Realtime cipher

AF-merge
Key storage

Figure 2: TKS1 scheme

Figure 2 depicts the overall structure of the advised solutions from previous
sections. The salt as well, as the AF-splitted master key, is coming from a key
storage. The salt can be saved without splitting, since it’s not sensitive to the
security of the system. The passphrase comes from an entropy-weak source like
the user’s keyboard input.

The initialization of the system is straight forward:

1. generate a master key

2. generate a salt to use for PBKDF2

3. choose an appropriate hash iteration rate by benchmarking the system

4. let the user enter the passphrase

5. process the passphrase with PBKDF2 and thus obtaining the password
derived key

6. setup the master key cipher with the password derived key

7. encrypt the master key with the master key cipher

8. AF-split the encrypted master key

9. save the AF-splitted encrypted master key, the iteration rate and the
password salt to storage

10. (setup the realtime cipher with the master key)

6

D
R

A
FT

11. (destroy master key copy in memory)

The recovery of an encrypted volume happens as follows, where step 3-5 are
identical to generation-mode steps 4-6:

1. read salt and iteration rate from key storage

2. read the AF-splitted encrypted master key from storage and AF-merge in
memory and thus obtaining the encrypted master key.

3. let the user enter the passphrase

4. process the passphrase with PBKDF2 (salt and iteration as parameter)
and thus obtaining the password derived key

5. setup the master key cipher with the password derived key

6. decrypt the encrypted master key with the master key cipher

7. setup the realtime cipher with the master key

8. (destroy master key copy in memory)

When a password has been compromised, the master key can be recovered
as shown above, but instead of using it for the realtime cipher, it can be re-
encrypted using a new password derived with PBKDF2. The master key en-
crypted with the old, compromised password can be easily destroyed as proposed
in Gutmann’s paper[2].

5 Reference implementation

LUKS, Linux Unified Key Setup, is a sample implementation of TKS1. More
information about this project can be found under
http://clemens.endorphin.org/LUKS

References

[1] B. Kaliski, RSA Laboratories. RFC 2898; PKCS #5: Password-Based Cryp-
tography Specification Version 2.0. http://www.faqs.org/rfcs/rfc2898.
html, 1996-1997.

[2] Peter Gutmann. Secure Deletion of Data
from Magnetic and Solid-State Memory.
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html,
1996.

[3] M. Bellare, R. Canetti, and H. Krawczyk. The HMAC papers.
http://www.cs.ucsd.edu/users/mihir/papers/hmac.html, 1996-1997.

7

