
LUKS On-Disk Format Specification

Version 1.0

Clemens Fruhwirth <clemens@endorphin.org>

February 8, 2005

Document History

This document version is the final standard for the LUKS on-disk-format Version
1.0.

Document history:

Version Changes
1.0 more clear distinction between raw data and string data by adding

a byte[] data type for LUKS magic, salt- and checksum data.

1 Overview

LUKS is short for ”Linux Unified Key Setup”. It has initially been developed
to remedy the unpleasantness a user experienced, when he upgrade his Linux
user space software, and noticed that suddenly his cryptographic storage was
unaccessible. The reason for this to happen was, a unstandardised way to read,
process and set up encryption keys, and if the user was unlucky, he upgraded
to an incompatible version.

LUKS has been invented to standardise key setup. But the project be-
came bigger as anticipated, because standards creation involves decision making,
which in turn demands for a justification of these decision. An overspring of this
effort can be found as TKS1 [Fru04], a design model for secure key processing
from entropy-weak sources 1.

LUKS is the proof-of-concept implementation for TKS1. Therefore, the
structure of LUKS follows the design rationals closely, as established in [Fru04].
Additionally to the security provided by the TKS1 model, LUKS gives the user
the ability to associate more than one password with an encrypted partition.
Any of these passwords can be changed or revoked in a secure manner.

This document specifies the structure, syntax and semantic of the partition
header and the key material. The LUKS design can be used with any cipher
or cipher mode, but for compatibility reasons, LUKS standarises cipher names
and cipher modes.

While the reference implementation is using dm-crypt, Linux’ kernel facility
for bulk data encryption, it’s not tied to it in any particular way.

A rough overall disk layout follows:

1such as a user password

1

LUKS phdr KM1 KM2 . . . KM8 bulk data

A LUKS partition starts with the LUKS partition header, and is followed by
key material (labelled KM1, KM2 . . . KM8 in figure). After the key material, the
bulk data is located, which is encrypted by the master key. The phdr contains
information about the used cipher, cipher mode, the key length, a uuid and a
master key checksum.

Also, the phdr contains information about the key slots. Every active key
slot stores an encrypted copy of the master key and is locked by an individual
password. The user may choose as many password as keyslots. To access a
partition, the user has to supply only one of these passwords.

If a password is changed, the old copy of the master key encrypted by the
old password must be destroyed. Peter Gutmann has shown in [Gut96], how
data destruction shall be done to maximise the chance, that no traces are left
on the disk. Usually the master key comprises only 16 or 32 bytes. This small
amount of data can easily be remapped as a whole to a reserved area. This
action is taken by modern hard disk firmware, when a sector is likely to become
unreadable due to mechanical wear. The original sectors become unaccessible
and any traces of key data can’t be purged if necessary.

To counter this problem, LUKS uses the anti-forensic information splitter to
artificially inflate the volume of the key, as with a bigger data set the probability
that the whole data set is remapped drops exponentially.

The inflated encrypted master key is stored in the key material section.
These sections are labelled as ”KMx” in the figure above.

2 Prerequisites

2.1 Block encryption system

Instead of using cipher implementations like AES or Twofish internally, LUKS
reuses the block encryption facility used for the bulk data. The following syntax
will be used in the pseudocode:

enc-data = encrypt(cipher-name, cipher-mode, key, original,

original-length)

original = decrypt(cipher-name, cipher-mode, key, enc-data,

original-length)

If the encryption primitive requires a certain block size, incomplete blocks
are padded with zero. The zeros are stripped upon decryptions.2

2.2 Cryptographic hash

A cryptographic hash is necessary for the following two prerequisites. In
PBKDF2 a pseudo-random function is needed, and for AFsplitting a diffusion
function is needed. The pseudo-random function needs to be parameterisable,
therefore the hash function will be used in a HMAC setup [BCK97].

2These primitives are also used for key material en/decryption. The key material is always
aligned to sector boundaries. If the block size of the underlaying encryption primitive is larger
than one sector, the pseudocode of section 4.1 has to be changed respectively.

2

The following syntaxes may omit the hash-spec parameter, because the fol-
lowing pseudo code will not need a great variation of this parameter. The
parameter can be obtained from the partition header and will not change, once
initialised.

2.3 PBKDF2

LUKS needs to process password from entropy-weak sources like keyboard input.
PKCS #5’s password based key derive function, PBKDF2, has been defined for
the purpose to enhance the security properties of entropy-weak password, see
[Kal97]. Therefore, LUKS depends on a working implementation of PBKDF2.
LUKS uses SHA1 per default as the pseudorandom function, PRF, but any
other hash function can be put in place by setting the hash-spec field. In the
flow charts, the following syntax will be used:

result = PBKDF2(password,

salt,

iteration-count,

derived-key-length)

Please notice, that the result of this function depends on the current setting
of hash-spec but the parameter has been omitted, because there is no great
variance of it. Think of hash-spec as sort of environment variable.

2.4 AF-Splitter

LUKS uses anti-forensic information splitting as specified in [Fru04]. The un-
derlaying diffusion function shall be SHA1 for the reference implementation,
but can be changed exactly as described in the remarks above. A C reference
implementation using SHA1 is available from [Fru05].

splitted-material = AFsplit(unsplitted-material, length, stripes)

unsplitted-material = AFmerge(splitted-material, length, stripes)

Please notice, that the result of AFsplit, splitted-material, is stripes-times
as large as the original, that’s length ∗ stripes bytes. Please notice, that the
length parameter is the length of the original content and not the length of the
splitted-material array.

3 The partition header

3.1 Version 1

The LUKS partition header, phdr, has the layout as described in Figure 1. It
starts at sector 0 of the partition. LUKS uses 3 primitive data types in its
header,

• unsigned integer, 16 bit, stored in big endian

• unsigned integer, 32 bit, stored in big endian

3

start offset field name length data type description
0 magic 6 byte[] magic for LUKS par-

tition header, see
LUKS MAGIC

6 version 2 uint16 t LUKS version
8 cipher-name 32 char[] cipher name specifica-

tion
40 cipher-mode 32 char[] cipher mode specifica-

tion
72 hash-spec 64 char[] hash specification

104 payload-offset 4 uint32 t start offset of the bulk
data (in sectors)

108 key-bytes 4 uint32 t number of key bytes
112 mk-digest 20 byte[] master key checksum

from PBKDF2
132 mk-digest-salt 32 byte[] salt parameter for mas-

ter key PBKDF2
164 mk-digest-iter 4 uint32 t iterations parame-

ter for master key
PBKDF2

168 uuid 40 char[] UUID of the partition
208 key-slot-1 48 key slot key slot 1
256 key-slot-2 48 key slot key slot 2
.
544 key-slot-8 48 key slot key slot 8

592 total phdr size

Figure 1: PHDR layout

• char[], a string stored as null terminated sequence of 8-bit characters3

• byte[], a sequence of bytes, treated as binary.

Further, there is an aggregated data type key slot, which elements are described
in Figure 2

A reference definition as C struct for phdr is available in the appendix.

3.2 Forward compatibility

LUKS’ forward compatibility will center around the on-disk format. Future
versions are required to be able to correctly interpret older phdr versions. Future
versions are not required to be able to generate old versions of the phdr.

A LUKS implementation encountering a newer phdr version should not try
to interpret it, and return an error. Of course, an error should be returned, if
the phdr’s magic is not present.

3also known as C string

4

offset field name length data type description
0 active 4 unit32 t state of keyslot, en-

abled/disabled
4 iterations 4 uint32 t iteration parameter for

PBKDF2
8 salt 32 byte[] salt parameter for

PBKDF2
40 key-material-offset 4 uint32 t start sector of key mate-

rial
44 stripes 4 uint32 t number of anti-forensic

stripes

Figure 2: key slot layout

4 LUKS operations

4.1 Initialisation

The initialisation process takes a couple of parameters. First and most impor-
tant, the master key. This key is used for the bulk data. The user will want to
create this key from a random source, as the overcoming of entropy weak keys
is one of LUKS’ main objectives. For the following remarks, the pseudo code is
available as Figure 3

Further, the user specifices the cipher setup details, which are stored in
cipher-name and cipher-mode fields. Although no LUKS operation manipulates
these two strings, it is likely that the LUKS implementation will have to convert
it into something suitable for the underlaying cipher system, as the interface is
not likely to be as ideal as described in section 2.1.

The overall disk layout depends on the length of the key material sections
following the phdr. While the phdr is always constant in size, the key material
section size depends on the length of the master key and the number of stripes
used by the anti-forensic information splitter. The exact disk layout is generated
by computing the size for the phdr and a key material section in sectors rounded
up. Then the disk is filled sector-wise by phdr first, and following key material
section 1 till key material section 8. After the eight key material section, the
bulk data starts.

After determining the exact key layout and boundaries between phdr, key
material and bulk data, the key material locations are written into the key slot
entries in the phdr. The information about the bulk data start is written into
the payload -offset field of the phdr.

The master key is checksummed, so a correct master key can be detected.
To future-proof the checksumming, a hash is not only applied once but multiple
times. In fact, the PBKDF2 primitive is reused. The master key is feed into
the PBKDF2 process as if it were a user password. After the iterative hashing,
the random chosen salt, the iteration count and result are stored in the phdr.

Although everything is correctly initialised up to this point, the initialisation
process should not stop here. Without an active key slot the partition is useless.
At least one key slot should be activated from the master key still in memory.

5

masterKeyLength = defined by user

masterKey = read from random source with length masterKeyLength

phdr.magic = LUKS_MAGIC

phdr.version = 1

phdr.cipher-name = as supplied by user

phdr.cipher-mode = as supplied by user

phdr.key-bytes = masterKey

phdr.mk-digest-salt = read from random, length: LUKS_SALTSIZE

phdr.mk-digest-iteration-count = LUKS_MKD_ITER or user input

phdr.mk-digest = PBKDF2(masterKey,

phdr.mk-digest-salt,

phdr.mk-digest-iteration-count,

LUKS_DIGESTSIZE)

stripes = LUKS_STRIPES or user defined

// integer divisions, result rounded down:

baseOffset = (size of phdr)/SECTOR_SIZE + 1

keyMaterialSectors = (stripes * masterKeyLength)/SECTOR_SIZE + 1

for each keyslot in phdr as ks {

ks.active = LUKS_KEY_DISABLED

ks.stripes = stripes

ks.key-material-offset = baseOffset

baseOffset = baseOffset + keyMaterialSectors

}

phdr.payload-offset = baseOffset

phdr.uuid = generate uuid

write phdr to disk

Figure 3: Pseudo code for partition initialisation

6

4.2 Adding new passwords

To add a password to a LUKS partition, one has to possess an unencrypted
copy of the master key. Either this is, because the initialisation process is still
in progress, or the user has supplied a correct password for an existing key slot,
which master key could therefore be recovered. This operation is sketched in
Figure 4.

Assuming we have a good copy of the master key in memory, the next step
is to fetch a salt from a random source, and the choice of a password iteration
count4. This information is written into a free, that’s disabled, key slot of the
phdr.

The user password is entered and processed by PBKDF2. The master key is
then splitted by the AFsplitter into a number of stripes. The number of stripes
is determined by the stripes field already stored in the key slot. The split result
is written into the key material section, but encrypted. The encryption uses the
same cipher setup as the bulk data (cipher type, cipher mode, ...), but while for
the bulk data the master key is used, the key material section is keyed by the
result of the PBKDF2.

4.3 Master key recovery

To access the payload bulk data, the master key has to be recovered. For a
pseudo code of the following remarks, see Figure 5.

First, the user supplies a password. Then the password is processed by
PBKDF2 for every active key slot individually and an attempt is made to re-
cover the master key. The recovery is successful, when a master key candidate
correctly checksums against the master key checksum stored in the phdr. Before
this can happen, the master key candidate is read from storage, decrypted and
after decryption processed by the anti-forensic information splitter in reverse
gear, that’s AFmerge.

When the checksumming of the master key succeeds for one key slot, the
partition is successfully opened.

4.4 Password revocation

The key material section is wiped according to Peter Gutmann’s data erasure
principals [Gut96]. To wipe the sectors containing the key material, start from
the sector as recorded in key slot’s key-material-offset field, and proceed for
phdr.key-bytes * ks.stripes bytes.

4.5 Password changing

The password changing is a synthetic operating of ”master key recovery”, ”new
password adding”, and ”old password revocation”.

4The iteration count should be determined by benchmarking.

7

masterKey = must be available, either because it’s still in

memory from initialisation or because it’s been

recovered by a correct password

masterKeyLength = phdr.key-bytes

emptyKeySlotIndex = find inactive key slot index in phdr by

scanning the keyslot.active field for

LUKS_KEY_DISABLED.

keyslot ks = phdr.keyslots[emptyKeySlotIndex]

PBKDF2-IterationsPerSecond = benchmark system

ks.iteration-count = PBKDF2-IterationsPerSecond *

intentedPasswordCheckingTime (in seconds)

ks.salt = read from random source, length LUKS_SALTSIZE

splittedKey = AFsplit(masterKey, // source

masterKeyLength, // source length

ks.stripes) // multiplication factor

splittedKeyLength = masterKeyLength * ks.stripes

pwd = read password from user input

pwd-PBKDF2ed = PBKDF2(password,

ks.salt,

ks.iteration-count

masterKeyLength) // key size is the same

// as for the bulk data

encryptedKey = encrypt(phdr.cipher-name, // cipher name

phdr.cipher-mode, // cipher mode

pwd-PBKDF2ed, // key

splittedKey, // content

splittedKeyLength) // content length

write to partition(encryptedKey, // source

ks.key-material-offset, // sector number

splittedKeyLength // length in bytes

ks.active = LUKS_KEY_ACTIVE // mark key as active in phdr

update keyslot ks in phdr

Figure 4: Pseudo code for key creation

8

read phdr from disk

check for correct LUKS_MAGIC and compatible version number

masterKeyLength = phdr.key-bytes

pwd = read password from user input

for each active keyslot in phdr do as ks {

pwd-PBKDF2ed = PBKDF2(pwd,

ks.salt,

ks.iteration-count

masterKeyLength)

read from partition(encryptedKey, // destination

ks.key-material-offset, // sector number

masterKeyLength * ks.stripes) // number of bytes

splittedKey = decrypt(phdr.cipherSpec, // cipher spec.

pwd-PBKDF2ed, // key

encryptedKey, // content

encrypted) // content length

masterKeyCandidate = AFmerge(splittedKey,

masterkeyLength,

ks.stripes)

MKCandidate-PBKDF2ed = PBKDF2(masterKeyCandidate,

phdr.mk-digest-salt,

phdr.mk-digest-iter,

LUKS_DIGEST_SIZE)

if equal(MKCandidate-PBKDF2ed, phdr.mk-digest) {

break loop and return masterKeyCandidate as

correct master key

}

}

return error, password doesn’t match any keyslot

Figure 5: Pseudo code for master key recovery

9

5 Constants

All strings and characters are to be encoded in ASCII.

Symbol Value Description
LUKS MAGIC {’L’,’U’,’K’,’S’, 0xBA,

0xBE }
partition header starts
with magic

LUKS DIGESTSIZE 20 length of master key
checksum

LUKS SALTSIZE 32 length of the PBKDF2
salts

LUKS NUMKEYS 8 number of key slots
LUKS MKD ITER 10 number of iterations

for the master key di-
gest

LUKS KEY DISABLED 0x0000DEAD magic for disabled
key slot in key-
block[i].active

LUKS KEY ENABLED 0x00AC71F3 magic for enabled
key slot in key-
block[i].active

LUKS STRIPES 4000 number of stripes for
AFsplit. See [Fru04]
for rationale.

References

[BCK97] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. The HMAC papers.
http://www.cs.ucsd.edu/users/mihir/papers/hmac.html, 1996-
1997.

[Fru04] Clemens Fruhwirth. TKS1 - An anti-forensic, two level, and iterated
key setup scheme. http://clemens.endorphin.org/publications,
2004.

[Fru05] Clemens Fruhwirth. Fruhwirth’s Cryptography Website.
http://clemens.endorphin.org/cryptography, 2005.

[Gut96] Peter Gutmann. Secure Deletion of Data from Magnetic and Solid-
State Memory. http://www.cs.auckland.ac.nz/~pgut001/pubs/

secure_del.html, 1996.

[Kal97] Burt Kaliski. RFC 2898; PKCS #5: Password-
Based Cryptography Specification Version 2.0.
http://www.faqs.org/rfcs/rfc2898.html, 1996-1997.

10

A PHDR as C struct

#define LUKS MAGIC L 6
#define LUKS CIPHERNAME L 32
#define LUKS CIPHERMODE L 32
#define LUKS HASHSPEC L 32
#define UUID STRING L 40

struct luks phdr {
char magic [LUKS MAGIC L] ;
u i n t 1 6 t v e r s i o n ;
char cipherName [LUKS CIPHERNAME L] ;
char cipherMode [LUKS CIPHERMODE L] ;
char hashSpec [LUKS HASHSPEC L] ;
u i n t 3 2 t pay loadOffse t ;
u i n t 3 2 t keyBytes ;
char mkDigest [LUKS DIGESTSIZE] ;
char mkDigestSalt [LUKS SALTSIZE] ;
u i n t 3 2 t mkDige s t I t e r a t i ons ;
char uuid [UUID STRING L] ;

struct {
u in t 3 2 t a c t i v e ;

/∗ parameters f o r PBKDF2 proces s ing ∗/
u in t 3 2 t pa s sword I t e r a t i ons ;
char passwordSalt [LUKS SALTSIZE] ;

/∗ parameters f o r AF s t o r e / load ∗/
u in t 3 2 t keyMate r i a lO f f s e t ;
u i n t 3 2 t s t r i p e s ;

} keyblock [LUKS NUMKEYS] ;
} ;

B Cipher and Hash specification registry

Even if the cipher-name and cipher-mode strings are not interpreted by any
LUKS operation, they must have the same meaning for all implementations
to achieve compatibility among different LUKS-based implementations. LUKS
has to ensure, that the underlaying cipher system can utilise the cipher name
and cipher mode strings, and as these strings might not always be native to the
cipher system, LUKS might need to map them into something appropriate.

Valid cipher names are listed in Table 1. Valid cipher modes are listed in
Table 2.

The same applies for the hash-spec field. Table 3 lists valid hash specs. A
compliant implementation does not have to support all cipher, cipher mode or
hash specifications.

11

cipher name normative document

aes Advanced Encryption Standard - FIPS PUB 197
twofish Twofish: A 128-Bit Block Cipher -

http://www.schneier.com/paper-twofish-paper.html

serpent http://www.cl.cam.ac.uk/~rja14/serpent.html

cast5 RFC 2144
cast6 RFC 2612

Table 1: Valid cipher names

mode description

ecb The cipher output is used directly.
cbc-plain The cipher is operated in CBC mode. The CBC chaining is cut

every sector, and reinitialised with the sector number as initial
vector (converted to 32-bit and to little-endian)

lrw-plain http://grouper.ieee.org/groups/1619/email/pdf00017.

pdf

Table 2: Valid cipher modes

hash-spec string normative document

sha1 RFC 3174 - US Secure Hash Algorithm 1 (SHA1)
sha256 SHA variant according to FIPS 180-2
sha512 SHA variant according to FIPS 180-2
ripemd160 http://www.esat.kuleuven.ac.be/~bosselae/

ripemd160.html

Table 3: Valid hash specifications

12

