
Liskell

Haskell Semantics with Lisp Syntax

Clemens Fruhwirth
〈clemens@endorphin.org〉

ABSTRACT
This paper introduces Liskell, a new syntax for Haskell.
Liskell belongs to the Lisp family of computer programming
language when judged by its syntax, but is mostly Haskell
when it comes to language semantics.

We argue that meta-programming in Haskell has not found
wide-spread adoption because of the disparity between the
abstract syntax tree and its visual appearance in source code
form. Liskell uses an extremely minimalistic parse tree and
shifts syntactic classification of parse tree parts to a later
compiler stage to give parse tree transformers the opportu-
nity to rewrite the parse trees being compiled. These trans-
formers can be user supplied and loaded dynamically into
the compiler to extend the language.

This paper introduces the Liskell syntax and serves as first
draft for a language definition. We conclude the paper with
a demonstration of meta-programming capabilities ranging
from quasiquotation to an embedded version of Prolog. We
implement Liskell as syntax frontend for the Glasgow Haskell
Compiler. The implementation is publicly available from
http://clemens.endorphin.org/liskell

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors

Keywords
Liskell, Haskell, Lisp, meta-programming, parse tree trans-
formation

1. INTRODUCTION
Haskell is a lazy, functional and pure, strongly and statically
typed programming language evolved by a mostly academic
community since . It features curried functions in the
tradition of the λ-calculus, Hindley-Milner type inference,
and a type class system to enable abstraction mechanism
similar to the object-oriented paradigm.

The Haskell  Report[8] is the defining work for Haskell.
We often refer to this work because the runtime semantics of
Liskell are purely Haskell. For the brevity of this paper, we
must assume the reader to have basic knowledge of Haskell.
For Haskell textbooks, we refer to [14]. The Glasgow Haskell
Compiler (ghc) is an implementation of Haskell 98, and we
use ghc as the foundation for the implementation of Liskell.

Although sharing the λ-calculus as common ancestor, the
Lisp family of programming languages is fairly distinct from
Haskell. The most visual difference is its full parenthesized
syntax known as symbolic expressions. On the semantic
side, Lisp allows state modifications and side effects and
therefore falls into the impure half of functional program-
ming languages. Lisp is usually strongly but not statically
typed, making runtime type checks mandatory. Compilers
are allowed to do type inference, but they are in a much
weaker position to come up with useful results, as the lan-
guage design does not guarantee comprehensive type infer-
ence.

Haskell stands a long tradition of modeling the writing cus-
toms of the logic and mathematics community. This is not
surprising as Haskell has a strong academic background and
therefore most researchers extend the Haskell syntax in a
way they are used to in writing. As appealing this syn-
tax is for reasoning, it falls short when one has to think of
it as an abstract syntax tree. This is rarely necessary for
regular programming activities, but indispensable for meta-
programming.

Meta-programming is available in Lisp via macros. We sel-
dom find average sized an Lisp program that does not make
use of macros. We think that the reason for the widespread
adoption of meta-programming in Lisp and the slow accep-
tance of Template Haskell in the Haskell community lies
within their syntactic differences.

Simplicity and uniformity. When the data structure for
parse trees is simplified, writing parse tree transformers be-
comes easier in two aspects: Analysing the input parse tree,
and generating the output parse tree.

Compared to Lisp, Haskell has a fairly complicated abstract
syntax tree. Many specialized sub trees are needed to model
a regular Haskell program. Template Haskell, Haskell’s meta-
programming facility, features  sub-tree types, with 

http://clemens.endorphin.org
http://clemens.endorphin.org/liskell


data constructors.1 In contrast, the Liskell parse tree struc-
ture has only one type with  constructors, namely one for
a node and one for a leaf.

Template Haskell (th) tries to hide its complexity by provid-
ing a language construct known as Quasiquotation, see [13].
Quasiquoting generates parts of the abstract syntax tree
from regular Haskell syntax snip lets. This works smoothly
as long as the programmer does not exceed the capability
of this construct, such as providing an output with a vari-
able number of parts. In such cases, the programmer has
to build the syntax tree manually. Also quasiquotation only
helps with generating but not with analysing parse trees.

Skills for free. Suppose we have a Lisp and a Haskell pro-
grammer that are intimate with their programming lan-
guage. The Lisp programmer has no difficulties to see the
Lisp parse tree behind the code he regularly writes, while
the Haskell programmer has to deal with syntax tree ob-
jects, he is not used to from regular programming. Haskell
meta-programming skills must be learned separately before
they can be put to use, while for the Lisp programmer they
come mostly for free.

Seamless integration. Lisp macros are not marked up dif-
ferently compared to regular language constructs. In con-
trast, th requires explicit markup for expressions evaluated
at compile-time and forces the programmer to show details
to the subsequent reading programmer that are potentially
undesired. This mental distinction between regular code,
compile-time code and built-in language constructors are
mostly unnecessary and at worst confusing to the reader.
Once the reader has understood the new syntax concepts
added with meta-programming, a different syntactic anno-
tation of meta-programming fragments prevents the reader
from perceiving the new syntax as naturally embedded into
the language.

Data equals code. While the “skills for free” argument
depends clearly on a simple syntax tree, the seamless inte-
gration of th as unannotated syntax could work too. The
problem in that case is not so much with making it unam-
biguous when to invoke compile-time code generation, but
in what form the arguments should be delivered to the code
generator.

Often Lisp macros belong to a special class of code genera-
tors, namely code transformers that manipulate an arbitrary
piece of code. These macros may be supplied with a mix of
data – to guide the compile-time code generation – and an
unevaluated code for verbatim inclusion in the generated
code.

Assuming these compile-time macros receive both data and
code, the compiler has to know at parse-time what parts
of the parse tree are data and what parts are code. The
consistence of this mix might eventually decided by macros
itself, giving the parser no chance – as it rans before macro
expansion – to deliver the macro with code elements parsed
as code and data delivered raw.

1ghc internally uses 57 types and 227 constructors to rep-
resent a parsed Haskell syntax tree.

?
Type Inference

?
Desugaring

?
Target Compiler

?
Haskell Parser

.hs File

Haskell Syntax Tree (HST)

HST with Type Information

Haskell Core

Executable or Bytecode

Figure 1: Inside a Haskell compiler

th solves this by using markup for code parts, but this pre-
vents seamless integration. In Lisp and in Liskell, the prob-
lem does not exist because the syntactic markup of data and
code is identical.

2. DESIGN PRINCIPLES
Liskell is implemented in ghc as a lexer, parser and an in-
compiler parse tree transformer.2 The lexer and parser are
extremely simple due to the simple nature of Liskell syntax.
The parse tree transformer converts a Liskell parse tree into
a Haskell syntax tree as it would be produced by the Haskell
source parser. Due to this, Liskell can take advantage of all
compiler facilities that have been written for the Haskell
syntax tree.

Figure1 lays out the regular path a Haskell source takes
through a Haskell compiler. The result from parsing is a
Haskell syntax tree that is put through type inference and
type checking. After type checking, the syntax tree is trans-
formed into a syntax tree for a more primitive language
called Haskell Core. The Core language is basically a fully-
type annotated implementation of the second-order lambda
calculus also known as System F or polymorphic lambda
calculus. Backends in ghc produce the appropriate target
code from the Core syntax tree, such as assembler code, C
code, or bytecode.

To reuse this work flow within the Haskell compiler, Liskell
targets the Haskell syntax tree as output, see Figure 2. But
before the Liskell primitive transformations turn a Liskell
parse tree (lpt) into a Haskell syntax tree, the user is able to
provide parse tree transformers to rewrite lpts arbitrarily.

2As part of ghc, Liskell falls under ghc’s simple permissive
mit-styled license.



?
Type Inference

�
?

?

?

?

�
�

��
@

@
@�

�
��
@

@
@

Yes:

No: Meta Programming

Liskell Primitive transformation

primitive?
Is LPT

Liskell Parse Tree (LPT)

.hs File

Haskell Syntax Tree (HST)

.lsk File

Liskell Parser Haskell Parser

Parse Tree Transformers

Figure 2: The Liskell source path

We realize Liskell meta-programming through the transfor-
mation loop for parse trees. Section 3 describes the Liskell
primitive transformations for different syntax forms. Section
4 introduces the Liskell meta-programming model.

2.1 The common and the rare
Most Liskell syntax forms can be given as an atom or as a
list. An atom is either a literal – character, string, integer
or rational – or it is a symbol. Literals have the usual Lisp
form: characters are prefixed with #\, strings are enclosed
into double quotes, integers are written as a set of base 10
digits, rationals might contain a dot for their decimal part.

An atom usually retains its semantic meaning when wrapped
in a singleton list. Whenever

atom → (atom)

is true for a syntax form, we say that atoms of this syn-
tax forms are auto-wrapped. Notice that this informal rule
works only one way. There is no auto-unwrapping although
there are syntax forms where over-parenthesized atoms hap-
pen to be semantically equivalent (as in expressions f.i.).

Syntax forms given as lists usually provide the opportunity
to give more details, while a single atom is usually only a
short form of the more elaborate list syntax. For instance
in patterns, the atom Nothing has the same meaning as
the singleton list (Nothing). Both forms map to a pattern
match with the zero-argument prefix constructor Nothing.
When we need to give a prefix constructor pattern with at
least one argument, we can not give the pattern as an atom
but have to choose the list form as for instance in

(Tree left-leaf right-leaf)

The way strings are handled in most programming languages
is a good example of “make the common case fast”. The
common case, namely writing characters, is made easy by
the string syntax, while seldom used special or control char-
acters are accessible with a special prefix \, the backslash
character. A character sequence follows the backslash spec-
ifying a control or special character, for instance \n for line
breaking. Usually the prefix character in its raw form is
also available via a character sequence, in most cases \\.
We employ the same concept for designing Liskell.

Expressions, patterns and types have specials forms that can
be accessed via its list syntax. Whether a list is a special
form or not is judged by the first element of the list, the
list head. If the form is not special, all syntax forms have
default meanings. For instance, the expression

(filter odd xs)

is not a special form, as its list head filter is not listed in
Table 1. Therefore it matches the generic function applica-
tion syntax, which is default for a list in the context of an
expression.

The form

(if x False True)

is a special form resembling the semantics of (not x). Its
list head if is special and consulting Table 1 reveals that
this expression is a conditional.

For the rare case, when specials shadow a desired default
meaning, we provide – analogous to \\ – a special that gives
access to the shadowed syntax forms. A function application
of args to a function named lambda can not be done by
(lambda args), because lambda is the special for closures.
We have to use the special app to force function application:
(app lambda args).3

3. LANGUAGE DEFINITION
This section is a rather dry and dense definition of Liskell.
Knowledge of the Haskell language definition [8] is recom-
mended for this section, although we try to briefly explain
the Haskell semantics where feasible.

This section defines the primitive Liskell transformations.
All restrictions mentioned in this sections are with respect
to a Liskell variant without meta-programming. We can lift
any syntactic restriction whenever we are able to rewrite the
offending parse tree into a conforming primitive parse tree
via meta-programming.

3.1 The Lexer and The Parser
As any Lisp, Liskell is very easy to lex and parse. An
Alex[10] generated lexer combined with a Happy[9] gener-
ated parser accounts for less then  lines of code, while

3The same effect can be achieved by referring to lambda in
its qualified form as in MyModule.lambda, because specials
only match unqualified symbols.



Form See [8] Semantic Meaning
lowid 3.2 Variable
Upid 3.2 Data constructor
literal 3.2 String, character, integer or fractional literal
(expr expr*) 3.3 Function application, left-associative
(lambda (pats*) expr) 3.3 Closure
(if expr expr expr) 3.4 Conditional, expr. order: conditional , then, else
([] expr*) 3.7 List
(let (E -binder*) expr) 3.12 Let binding, see binding syntax 3.4
(case expr matches*) 3.13 Case analysis, see match syntax 3.3
(:: expr type) 3.16 Type cast
(, expr*) 3.22 Tuple with expr*
(app expr expr*) none Explicit application

Table 1: Expression Syntax

ghc needs about  lines of Alex and Happy code to parse
Haskell.

Haskell distinguishes between varid and conid symbols. The
former starts with a lowercase character, while conid starts
with a capital letter (see [8] 2.4). Liskell keeps this simple
identifier distinction.

Liskell is more liberal when it comes to identifiers for sym-
bols. The set of identifiers is larger than the set of possible
identifiers for Haskell, and so a part of the Liskell identi-
fier set can only be reused in Liskell modules. An exam-
ple for this would be identifiers containing dashes that are
quite popular among Lisp programmers. Identifiers such
as print-object can not be used in Haskell, because the
Haskell parser sees an infix minus operator here.

We use the meta-variable symbol to refer to the whole range
of symbols, Upid to refer to an identifier starting with a cap-
ital letter or a colon. lowid denotes all non-Upid identifiers.

A symbol can be qualified by putting the module name sep-
arated by a dot in front of its identifier. The semantics of
qualified names are defined in Chapter 5 of [8].

3.2 Expressions
Expressions defined in Table 1 are valid for all meta-variables
named expr . Most specials are documented properly in the
Haskell Report [8]. The syntax forms given in tables 1-6 are
always matched starting the most specialized to the least
specific on top of the tables.

An expression is either an atom or a list. Atoms are in-
tegral and fractional numbers, strings, characters and sym-
bols. With respect to overloading, all atoms that are not
symbols are treated in the same way as in Haskell, see 6.4.1
in [8].

A list is usually an application of a function to a series of
arguments, unless the head of the list is special. Because
functions are fully curried in Haskell, a multi-argument func-
tion application is actually a series of left-associatively con-
structed sequence of applications. Hence

(f a b c) → (((f a) b) c)

which is not true for most Lisp dialects.

In contrast to Lisp, (fun) does not cause a function invoca-
tion of fun with zero arguments. Haskell knows no functions
without arguments. (fun) is best thought of as (id fun),
the application fun to id.

3.3 Patterns
A unification algorithm answers the questions whether two
meta-variable containing terms can be made equal by substi-
tuting these meta-variables for arbitrary terms. Either unifi-
cation fails or the answer is a set of substitutions. Matching
is a restricted form of unification where only one term is al-
lowed to contain meta-variables. Pattern matching is mainly
used to destructure algebraic data types (adt).

In the pattern syntax, the “variable pattern” denotes a meta-
variable. When pattern matching succeeds, the result is not
a substitution set, but more conveniently, variables with the
same identifiers as the meta-variables are bound in the lex-
ical scope to the respective substitution term.

The semantics of pattern matching in Liskell are directly
derived from Haskell semantics. See Section 3.17.2 of [8] on
the informal semantics of pattern matching.

In case statements, we use the minor syntax form match. It
is the mere aggregation of a pattern pat and an expression
expr into a list (pat expr) with no form shorter than that.

3.4 Bindings
Binders are a minor syntax form that is used in top-level
binders and in the lexically scoped binder let. There are two
syntax forms for binders: E-binders and ET/TE-funbinders.
The latter is a restricted version of an E-binder that is only
able to bind functions but in exchange for that allows type
annotation for functions.

3.4.1 The generic E-binder
An E-binder is a syntax form that assigns values to identi-
fiers. The following syntax

(binding expr)

creates a binder for binding bound to expr in the lexical envi-
ronment when used with let and in the global environment
when used with define.



Form
§3.17.2
[8] Semantics
3 Wildcard pattern

lowid 1 Variable pattern
literal 7 Literal pattern
Upid 4, 5 Constructor pattern with zero arguments
(Upid pat*) 4,5 Prefix constructor pattern
(@ lowid pat) 9 As-pattern with named lowid , and pat as payload pattern
(~ pat) 2 Lazy pattern
([] pat*) – List pattern
(, pat*) – Tuple pattern
(Con symbol pat*) 4,5 Constructor pattern with prefix symbol

Table 2: Pattern Syntax

lowid Type variable
Upid Type constructor with no arguments
(symbol type*) Application (left associative)
(-> type type+) Function type (right associative)
(=> context type) Constrained type
([] type) List type
(, type*) Tuple type
(! type) Bang type
(app symbol type*) Application (left associative)

Table 3: Type Syntax

Haskell knows two kinds of binders, function binders and
pattern binders. All patterns shown in the last section can
be part of a pattern binder except the variable pattern. A
primitive variable is modeled by a zero-argument function
binder. Liskell differentiates between the binder types by
the syntactic form of their binding part.

• If binding is a single symbol, it is interpreted as binding
for a primitive variable. Emit a function binder.

• If binding is recognized as a pattern (see 3.3), emit a
pattern binder.

• Otherwise emit a function binder. This can only hap-
pen when binding has the form

(lowid p1 . . . p2)

This binds a function named lowid with p1 . . . pn ar-
guments, where pi are patterns.

3.4.2 ET/TE funbinder
In some cases, we need to type annotate the binding. We
introduce two binders that are only valid for function binders
and are syntactic variants of each other. They can be used
to explicitly give signatures to top-level functions or to class
methods.

We use the meta-variable ET-funbinder for the first variant

(binding expr [type])

which is practically an E-binder extended with an optional
type. The second variant, the TE-funbinder , just flips the
positions of the type and the expression making the latter
optional,

(binding type [expr ])

In both variants binding must match the last section’s rules
1 or 3 for function binders.

The reason for providing two variants is that there are cases
where we want to omit the type and others where we want to
omit the expression. Examples for the former are functions
and instance declarations, examples for the latter are class
definitions.

3.5 Types
In the context of types, a parse tree consisting of a sym-
bol represents a type variable or a type constructor. Type
variables are symbols with lowid while type constructors are
written as Upid . Liskell interprets a list as left-associative
type application. The specials for types are listed in Ta-
ble 3. They include the right-associative type constructor
for functions, i.e.

(-> t1 t2 t3) → (-> t1 (-> t2 t3)))

3.5.1 Constrained type forms
Haskell syntax contains a number of type forms that are
syntactically restricted. They are defined in [8] 4.1-4.3. The
same restrictions apply to their Liskell counterparts but for a
few forms the syntax is different. This section aims to give
a brief description of these differences without explaining
the concepts below. Understanding these concepts is only
necessary for programming with type classes.

The syntactic appearance of class and simpleclass predicates
as well as simpletypes, newconstr and qtycls does not change.
constr is only allowed to appear in its prefix form, and any
occurrence of strictness as in !atype has to be replaced by



(defmodule Upid exports (import*)) Defines a module
(define . E-binder) Value definition including patterns.
(define . ET-funbinder) Value definition and/or signature definition
(defwithsig . TE-binder) Signature definition and/or value definition
(deftype simple-type type) Type synonym
(defnewtype simple-type |context newconstr) newtype definition
(defdata simple-type |context (constr*)) Algebraic Data Type
(defclass simple-type |scontext TE-funbinder*) Class definition
(definstance (qtycls inst) |scontext ET-funbinder*) Instance declaration

Table 4: Top level specials

(! atype). inst is only allowed in its type application form
or as gtycon.

A context is a collection of predicates given as list. Predi-
cates are either represented in the class or simpleclass syn-
tax. If the context consists only of a single predicate, the
predicate is auto-wrapped to form a single-element context.
Due to the restrictions on the forms of predicates this is an
unambiguous transformation, as the first element has to be
an Upid by the syntax of scontext and context .

The two type forms simpletype and inst might be constrained
by an explicit context. As there are two context variants,
scontext and context we indicate which one is allowed by
typesetting the context bar-separated in subscript, as for
instance simpletype |context.

3.6 Top Level
At top-level, we see only special syntax forms. There is no
default interpretation of a list with an unknown list head.
Symbols are invalid at top-level.

3.6.1 Modules
Every Liskell source file starts with a defmodule statement,
defining the module’s name, its exports and its imports. The
objects for import and export are specified with the iename
syntax.

exports is either or (iename*). In the former case, the
wildcard pattern symbol indicates that the module exports
its entire variable, function, type and class content. In latter
case, the list of iename enumerates all objects for export.

The forms of import are given in Table 6. Either it is an
Upid naming a module which should be imported entirely, or
it is a list naming the objects that should be imported from
Upid . The iename* list can start with a flag list. Possible
import flags are hiding, qualified, and (as Upid) with
semantics as given in Chapter 5 of [8].

3.6.2 Definitions
define, defwithsig. Both forms define bindings for identi-
fiers. define gives an expression with an optional type sig-
nature, while for defwithsig the type signature is manda-
tory and the expression is optional.

deftype, defnewtype, defdata. These constructs define type
synonym, new types, algebraic data types (adt). All of
these constructs inherit the semantics of Haskell. An adt is

lowid variable or function
Upid type/class
(Upid ) class/type with all methods/construc-

tors
(Upid lowid*) class with method named lowid*
(Upid UpId*) type Upid with type constructors

Upid*
(module UpId) module content (export only)

Table 5: iename Syntax

a type that can be instantiated with one of possibly many
constructors. Every constructor is wrapping zero or more
payload types. The only way to access the payload is by
unwrapping it via pattern matching. An adt can also be
described as a sum type over product types.

defclass, definstance. Class declarations define the meth-
ods a member type must have. Usually only method sig-
natures are given in the declaration, while default meth-
ods are optional. TE-funbinders fit in perfectly here. For
definstance, we use ET-funbinders as with them expres-
sions are mandatory but type annotations are optional.

3.7 Examples
The previous sections defined the core of Liskell, its primi-
tive syntax. The primitive syntax forms are directly trans-
lated into ghc fragments of the Haskell syntax tree.

This section serves as show case to give an impression how
Liskell looks for simple programming examples.

(defmodule Main _ ()) ; export all , no imports

(define main
(print "Hello World "))

(define (fact n)
(if (== n 0)

1
(* n (fact (- n 1)))))

(define (quicksort xs)
(case xs

([]) ([]) ; nil in gives nil out
((: x xs)
(++ (quicksort (filter (< x) xs))

(: x
(quicksort (filter (>= x) xs )))))))

Notice the recursive definition of the Fibonacci numbers.

(define fibs (++ ([] 0 1)
(zipWith + fibs (tail fibs ))))



Upid all symbols of module Upid
(Upid iename*) iename* symbols from module

Upid
(Upid (flags import-flags*) iename*) as above with import flags

Table 6: import Syntax

Figure 3 gives a computer player for the game Tic Tac Toe.
The full source is available as part of the Liskell regression
test suite.4

Figure 4 features a direct comparison of one of Tic Tac Toe’s
functions: add-move. The semantic of the Haskell – on the
left – and Liskell code – in the middle – are identical. Both
use pattern matching to destructure a tuple in the function
arguments, carry out a case analysis on the player argument
given as character, and reassemble a tuple with either the
first or the second tuple part modified by the insert func-
tion.

The Common Lisp (cl) variant on the right works similarly,
with the exception that it does not use a tuple but an un-
typed cons cells, and that it has to use accessors functions
as cl lacks destructuring in function arguments.

4. META-PROGRAMMING IN LISKELL
Meta-programming is the strategy of writing code that writes
code. The development of high level programming languages
such as Haskell can be seen as a form of meta-programming
on top of backend languages such as assembler or C. More
visible applications of meta-programming are parser gener-
ators, object persistence mapping tools, and remote proce-
dure call stub generators.

We seldom find languages that feature meta-programming
within the language itself. The Lisp family of computer
programming languages is an exception to that and is by
far the most successful language family to employ meta-
programming in daily programming.

Liskell brings meta-programming to the Haskell world by
introducing the concept of parse tree transformers (ptt).
This concept is more general than the meta-programming
facilities defmacro and symbol-macrolet in Common Lisp.
Liskell provides a single hook into the compiler, namely
envlet.

4.1 Liskell Parse Trees
Before we can talk about parse tree transformers (ptts),
it is good to get familiar with the data structures of parse
trees. We define a simplified version of the Liskell parse tree
for demonstration purposes:

(defdata SParseTree
(SSym String)
(SList ([] SParseTree )))

This defines an algebraic data type called SParseTree with
the constructors SSym for String-carrying leaves and SList

for nodes with a list of child nodes.

4http://clemens.endorphin.org/testsuite-liskell/
tests/liskell/testprogs/TicTacToe.lsk

The expression

(define (double x) (+ x x))

has the parsetree form

(SList ([] (SSym "define ")
(SList ([] (SSym "double ")

(SSym "x")))
(SList ([] (SSym "+")

(SSym "x")
(SSym "x")))))

Every symbol corresponds to an instance of SSym while every
parse tree list is represented by SList. The next section
describes how to operate with this data structure.

4.2 Parse Tree Transformers
A parse tree transformer is a function that maps from one
parse tree to another. Using our simplified version of the
parse tree, the function signature of a transformer is

(-> SParseTree SParseTree)

To give a practical example, we introduce a ptt that enables
us to use syntax for cond, a multi-conditional version of if.
In tradition of cl [2], we want to use cond in the following
way:

(cond ((< a b) LT)
((> a b) GT)
(True EQ))

The ptt should rewrite this cond statement into a series of
ifs. For the example above, the result should be:

(if (< a b)
LT
(if (> a b)

GT
(if True

EQ
undefined )))

The first objective of the ptt is to look for syntax with the
shape (cond . . . ). When we pattern match the given parse
tree against

(SList (: (SSym "cond") clauses))

we not only find this specific form, but also extract the list
of clauses into the variable clauses.

Every clause is composed of a guard and an action, and for
each we generate the following code expansion

(if guard action rest-of-expansion)

For an empty set of clauses, we emit (SSym "undefined"),
which stands for the undefined symbol in Haskell that when
evaluated will cause a run-time error.

http://clemens.endorphin.org/testsuite-liskell/tests/liskell/testprogs/TicTacToe.lsk
http://clemens.endorphin.org/testsuite-liskell/tests/liskell/testprogs/TicTacToe.lsk


(define (computer -player state ego)
(case (game -over? state)

((Just a) (, undefined a))
(Nothing (let (( results (map (lambda (move)

(let ((new -state (board -add -move state move ego))
((, _ winner) (computer -player new -state

(opponent ego ))))
(, move winner )))

(Data.Set.toList (board -valid -moves state ))))
(rate -with (case ego

(#\a rate -outcome -a)
(#\b (- rate -outcome -a))))

(sorted -results (sortBy (lambda (result1 result2)
(compare (rate -with result2)

(rate -with result1 )))
results )))

(head sorted -results ))))) ;; return the best move

Figure 3: Tic Tac Toe computer player in Liskell

add_move (stateA , stateB)
move
player =

case player of
’a’ -> (insert move stateA ,

stateB)
’b’ -> (stateA ,

insert move stateB)

(define (add -move (, stateA
stateB)

move
player)

(case player
(#\a (, (insert move

stateA)
stateB ))

(#\b (, stateA
(insert move

stateB )))))

(defun add -move (state move player)
(case player

(a (cons (cons move
(car state ))

(cdr state )))
(b (cons (car state)

(cons move
(cdr state ))))))

Figure 4: Haskell vs. Liskell vs. Common Lisp

(define (cond -ptt pt)
(let (((trf -cond ([]) (SSym "undefined "))

((trf -cond (: (SList ([] guard action ))
rest)

‘(if ,guard
,action
,(trf -cond rest ))))

((trf -cond _) (error "Invalid cond ")))
(case pt

(( SList (: (SSym "cond") rest))
(trf -cond rest )))

(_ pt))

This code expands all cond forms and passes along all other
forms unmodified. Notice that we use a new facility in the
cond-ptt function, namely backquoting. Basically back-
quoting is syntax sugar to give us a convenient code template
mechanism. The statement

‘(if ,guard ,action ,(trf-cond rest))

is equivalent to

(SList ([] (SSym "if")
guard
action
(trf -cond rest )))

Section 5.4 introduces the backquoting facility in detail.

4.3 The real model
A real Liskell ptt is not that simple. The Liskell compiler
environment contains entry points to four ptts for the four
major syntax classes. The Liskell compiler invokes the ap-
propriate function in the compiler environment whenever it
has to transform an expression, a pattern, a type or a top-
level declaration. The programmer is able to modify these

entry points. The regular approach is to replace one entry
point by a user-supplied function that calls the old entry
point when it finishes its parse tree transformation.

In Liskell, a ptt is obligated to communicate whether it
transformed the parse tree or not. The reason is that for
modified parse trees the parse tree transformation must be
restarted, so embedded syntax sugar is expanded further.
ptts do not have such a simplistic signature, as the one
given in the last section. Parse tree transformation happens
in continuation-passing style. A user supplied ptt is invoked
with two continuations, one for successful transformations,
and one continutation the ptt has to call when it has not
modified the parse tree. As the transformation proceeds, the
syntax tree becomes more expanded and finally converges to
primitive Liskell syntax forms.

The Liskell primitives are ptts themselves with the distinc-
tion that they do not transform a Liskell parse tree into an-
other Liskell parse tree as user supplied ptts would do, but
they transform primitive Liskell syntax into Haskell syntax
trees.

4.4 Environment Transformers
To become an active part of the compiler, a ptt has to be
hooked into the Liskell compiler environment. At the mo-
ment, Liskell knows four transformers: expression-, pattern-,
type- and top-level declaration-transformers.

To add a transformer to the compiler environment there are
two special forms, defenv and envlet, while defenv is only
syntax sugar for the latter. The former modifies the compiler
environment of all following top-level declarations, while the



(defenv fun) redefines the current compiler
environment.

(envlet fun decls/expr) redefines the compiler environ-
ment for the enclosed declara-
tions or the enclosed expression.

Table 7: Meta-programming forms

latter modifies the environment only for the enclosed decla-
rations. envlet can also be used in an expression context,
while in this case the enclosed form must be an expression.

The Liskell compiler environment is stored in the simple
product type

(LskEnv exprtrf pattrf typetrf decltrf )

where the all transformation functions trf have the signature

(-> ParseTree (-> ParseTree a)| {z }
success continuation

(-> ParseTree a)| {z }
failure continuation

a)

4.4.1 cond-ptt revised
The previous cond ptt needs a few modifications to work
with the real Liskell compiler model. The modifications are
typeset in italic . First, we need to call continuations for
succeeded and failed transformations.

(define (cond-ptt-1 pt ks kf)
(let ...

(case pt
(( SList (: (SSym "cond") clauses ))
(ks (trf-cond clauses))) )

(_ (kf pt) ))

To activate this ptt, we use the following compiler environ-
ment transformer

(defenv (lambda (( LskEnv e p t d))
(return (LskEnv cond -ptt -1 p t d))))

Now only one problem remains, namely that the old entry
point e is discarded and that the only active ptt is the cond
ptt. Usually, we want more than one ptt to be active, and
so we need to create a chain of ptts as mentioned before. We
can achieve this by replacing the entry point with a function
partially applied to the old entry point. This way the new
ptt gets a reference to the old entry point which it can call
for failed transformations. The failure continuation is not
called directly by the new ptt and only passed through to
the old ptt.

(define (cond -ptt -2 kn pt ks kf)
(let ...

(case pt
(( SList (: (SSym "cond") clauses ))
(ks (trf -cond clauses )))

(_ (kn pt ks kf) ))))

The invocation of defenv changes to

(defenv (lambda (( LskEnv e p t d))
(return (LskEnv (cond-ptt-2 e) p t d))))

5. THE LISKELL PRELUDE
The language defined by the Liskell primitives is very sparse
and not convenient for daily programming. The Liskell Pre-
lude provides the programmer with a set of convenience
functions and syntax sugar that eases programming. Si-
miliar to the Haskell Prelude – which is imported too – the
Liskell Prelude’s module LskPrelude is imported with every
Liskell source implicitly.

5.1 Simple List
The simple list ptt transforms lists prefixed with a procent
sign % into an explicit list.5 After injecting this ptt, we
can write ([] a b c) in a shorter form

%(a b c)

The simple list syntax sugar also rewrites the symbol nil
into ([]). This is transformer can be used for patterns too.
Be aware that when you see nil as symbol in a pattern
match, it might not denote a meta-variable, but in fact a
match for the empty list.

5.2 The Dispatcher Namespace
In Liskell terminology, the ptt part which decides whether
to modify a parse tree or not is called dispatcher. Invoca-
tions of defenv or envlet always hook the dispatcher part
into the compiler environment. The Liskell Prelude tries
to keep dispatchers in a different namespace than regular
functions.

The dispatcher namespace can be access by wrapping a sym-
bol into a “d” prefixed list such as d(dispatcher). The
Prelude defines two top-level declarations for the dispatcher
namespace:

• (define-dspr (function args . . . ) body) is equal to
define except that a new dispatcher function is de-
fined in the dispatcher namespace.

• (add-dspr (syntax-class dispatcher)*) – add-dspr is
syntax sugar for defenv. It adds multiple dispatchers
to the compiler environment. The statement

(add -dspr (expression simple -list)
(pattern simple -list)
(declaration defmacros ))

adds the simple-list syntax sugar to expressions and
patterns, and defmacro syntax to toplevel declarations.
expression, pattern, type and declaration are valid
choices for syntax-class.

5.3 Quoting
Liskell does not modify the Haskell evaluation semantics and
as Haskell does not know a quote operator, Liskell has to in-
troduce its own. It provides the convenience function quote

that turns a ParseTree into another ParseTree that when
evaluated results in the original ParseTree.

The code fragment (a b) is represented by the parse tree

(SList ([] (SSym "a") (SSym "b")))

5% was a totally arbitrary choice.



In fact, we just quoted the expression (a b) by giving an
expression that when evaluated results in a parse tree rep-
resenting (a b).

Let us look what we just did. For the symbols a b, we
created an application of SSym to its identifier. We can do
this easily with the function:6

(define (qSSym (SSym id))
(SList %(( SSym "SSym") (SSym (show id)))))

The use of show adds doulbe quotes around id marking it a
string. For lists, we have to create an application of SList

to a list containing quoted parse tree elements. With the
help of the function quote – defined in a second – we can
realize quoting for lists with:

(define (qSList (SList lst))
(SList %(( SSym "SList")

(SList (: (SSym "[]")
(map quote lst ))))))

With qSSym and qSList we covered all possible syntax forms
of SParseTree and can write the function quote that dis-
patches to these two helper functions:

(define (quote pt)
(case pt

((SSym _) (qSSym pt))
(( SList _) (qSList pt))))

The evaluation of (quote (a b)) is equivalent to the eval-
uation of:

(SList
([] (SSym "SList")

(SList
([] (SSym "[]")

(SList ([] (SSym "SSym")
(SSym "\"a\""))

(SList ([] (SSym "SSym")
(SSym "\"b\""))))))))

5.4 Quasiquotation
With the basic form of quoting defined, the Liskell Prelude
is able to provide one of the most important convenience
facility to meta-programming: quasiquotation also known
as backquoting. In [4], Bawden describes quasiquotation as
“... a parametrized version of ordinary quotation, where
instead of specifying a value exactly, some holes are left to
be filled in later”. Backquoting can be seen as a template
mechanism for code that needs to produce a parse tree as
output. In most cases, we need bits of the output parse tree
to be variable.

In general, all parse tree elements prefixed via backquot-
ing are quoted with the quote function from the last sec-
tion. Unquoting creates an exception from that – it gener-
ates the “holes” Bawden refers to. Comma-prefixed parse
trees are not subject to quoting. The most elementary form
of unquoting – a very pathological case – is the immedi-
ate unquoting of a backquoted symbol such as ‘,a which is
equivalent to a. More commonly, we see unquoting inside a
backquoted list such as
6The function for symbol quoting found in LskPrelude is
different from the one given, as the syntax for SList and
SSym is defined later in the Liskell Prelude and hence can
not be used.

‘(if ,guard ,action ...)

This returns a parse tree with ,guard and ,action replaced
by the parse trees snip lets contained in the variables guard
and action.

Backquoting also supports an operator that allows splicing
parse tree lists, namely ,@.

(let ((pt -lst ‘(b c d)))
‘(a ,@pt -lst e))

returns a result equivalent to ‘(a b c d e). While the re-
sult of

‘(a ,pt-lst e)

is equivalent to ‘(a (b c d) e).

Backquoting can be nested, and by repeated use of unquot-
ing, we can create complete expressions such as:

(let (( level0 ‘c))
‘(let (( level1 ‘d))

‘(a b c ,,level0 ,level1 ,,(if level0 -var
‘‘(a b)
‘‘(b a)))))

We define the backquoting operator as follows:

Definition 1. ‘pt is equal to (quote pt) except for two
cases:

• ‘,pt is equal to pt

• when pt is a list. Then ‘(pt1 pt2 pt3 ..) is equal to
(SList (concat ([] {pt1} {pt2} {pt3}))).

In the definition we us the a new curly-bracket operator that
is defined as follows:

Definition 2. {pt} is equal to singleton list ([] ‘pt) ex-
cept in one case, namely {,@pt} is equal to (pt list pt)7.

A sketch of the LskPrelude backquoting implementation
is given in Figure 58. The implementation of backquoting
makes use of the following properties for the Maybe monad
type, which has the zero-argument constructor Nothing and
the one-argument constructor Just value:

• (>>= Nothing fun) ≡ Nothing.

• (>>= (Just value) fun) ≡ (fun value).

7pt list returns the parse tree list wrapped by SList and
PList
8Paradoxically the backquote operator seems to use itself in
its definition as it contains backquoted symbol. The reason
why this works, and is contained in LskPrelude as it is writ-
ten here, is that prior to this definition we defined a primi-
tive version of backquoting that works only for symbols. We
defined syntax sugar to ease the definition of syntax sugar.



(define (bq -quote ks pt)
(let ((pt -expand (bq-dispatch (lambda (pt ks kf) pt) pt id undefined )))

(Just (ks (fromMaybe (case pt -expand
(( PList loc lst pp)
(qPList loc

(SList %(‘concat
(SList (: ‘[] (map bq -bracket lst )))))

pp))
(_ (quote pt-expand )))

(comma? pt -expand )))))))))

(define (bq -dispatch kn pt ks kf)
(fromMaybe (kn pt ks kf)

(>>= (quoted? pt)
(bq -quote ks))))

(define (bq -bracket pt)
(fromMaybe (SList %(‘[] (bq -quote pt)))

(comma -at? pt)))

Figure 5: Backquoting implemented as Parse Tree Transformer

• (fromMaybe default Nothing) ≡ default .

• (fromMaybe default (Just value)) ≡ value.

A computation in the Maybe monad might fail, and the com-
bination operator >>= only carries on with the computation
when no failure (Nothing) has been encountered. fromMaybe
provides wraps a Maybe monad and provides a default value
for failed computations.

The functions quote?, comma? and comma-at? are predi-
cates that either return a parse tree suitable for further pro-
cessing or the predicate fails by returning Nothing. quote?

tests whether the parse tree it gets is backquoted, and if yes,
returns a parse tree stripped from the quote. comma? and
comma-at? check for a comma or a comma-at prefix.

The bq-dispatch function only dispatches on parse tree el-
ements that are accepted by quoted?, otherwise the parse
tree is sent to the kn continuation. The backquoted parse
tree is handed to bq-quote without its prefix, which further
expands any backquoting by recursively calling bq-dispatch

with identity continuations.

bq-quote is moderated by the comma? predicate. If comma?
returns Nothing, either bq-bracket processes all list ele-
ments, if the parse tree is a list, or if it is not, bq-quote

returns the parse tree quoted. bq-quote always calls the
given success continuation and signals a success by handing
the return value of ks wrapped in Just to its caller.

bq-bracket works similarly, but only for the curly bracket
operator, and the list splicing operator ,@. Curly bracket
elements are either returned quoted in a singleton list, or
when list splicing is detected by comma-at?, the respective
unquoted element is returned.

5.4.1 The Parseable Type Class
The predicates comma? and comma-at? not only test for
comma prefixed elements, but also return parse trees that
are fit for the inclusion in the output code of the backquote
ptt. Both predicates wrap the returned parse tree in

(toParsetree pt)

The method toParseTree is part of the type class Parseable.
This type class requires a member type t to define a method
toParseTree that has the type signature

(-> t ParseTree)

namely a function that converts the member type t into a
parse tree. Liskell defines the types Integer, Char, Rational,
and ParseTree and lists of Parseables to be part of the type
class Parseable providing a method toParseTree to convert
these type into a ParseTree.

With this facility, all Parseable types can be embedded into
a backquoted list without wrapping, such as this integer
example

(let ((a 1)) ‘(+ ,a ,a))

Users can provide Parseable instances for their types to
enable automatic and unannotated lifting into backquoted
expressions.

5.5 defmacro
The Liskell prelude contains syntax sugar for defining macros
similar to cl macros. The syntax for defmacro is

(defmacro (macro-name pts) body)

and the result is that a dispatcher with the name macro-
name is defined that dispatches all parse trees of the form
(macro-name . . . ) to the macro’s body , binding pts to ev-
erything that follows macro-name in the matched parse tree.
We will see examples of defmacro in the next section.

5.6 Derive – Type Class Instance Generation
The Haskell 98 standard defines syntax sugar to automat-
ically generate instances of algebraic data types in types
classes. But this syntax sugar is limited to 6 type classes.
Liskell does not include any deriving syntax in its primitive
syntax, but adds this comfort via its Prelude. For derive syn-
tax sugar, ptts work in a team. The defdata-deriving syn-
tax extracts the deriving directive included within a defdata

statement into separate top level declarations.



To give an example,

(defdata ZenTree Leaf (Node ([] ZenTree ))
(deriving Eq Show))

is split and normalized by the defdata-deriving ptt into

(defdata ZenTree (Leaf) (Node ([] ZenTree )))
(derive Eq

ZenTree (Leaf) (Node ([] ZenTree )))
(derive Show

ZenTree (Leaf) (Node ([] ZenTree )))

For every instance template, there is a ptt producing the
template code. For example, derive-eq dispatches on top-
level declarations of the form

(derive Eq ..)

and replaces this top-level declaration by the appropriate
definstance declaration. The user can supply ptts that
dispatch on any arbitrary second symbol in the (derive

..) top-level declaration, hence he can extend this deriving
mechanism easily.

5.7 Field Syntax: sugar for updates
Haskell provides syntax sugar for updating certain parts of
adts. The Liskell Prelude provides a facility to define syntax
for field like updates.9 The defdataf top-level declaration
is identical to defdata with the exception that the constr
meta-variable is substituted by

(Upid (field-name type)*)

where Upid is the constructor name – as before – but the
payload types of the constructor have to be paired with lowid
field identifiers. defdataf defines a ptt with the name iden-
tical to the type that dispatches on the form

(update type-name obj (field-name new-value)*)

The semantics of the parse tree generated in place of this
update form is modelled along Haskell field syntax.

5.8 Infix to multi-argument prefix
Binary infix operators are convenient because they can un-
ambiguously combine a complex expression solely moder-
ated by precedence levels and associativity declarations. The
expression a + b + c + d must be written in Liskell with the
cumbersome use of parenthesized sub-expressions

(+ a (+ b (+ c d))

cl provides an uncurried function calling syntax which al-
lows multi-argument functions. Liskell, as it is based on the
curried function convention of Haskell, can not work this
way. But we can reintroduce multi-argument syntax sugar
with ptts. This way, we regain the flexibility of associa-
tivity from binary operators by transforming them into a
multi-argument prefix macro.

Assume there is a ptt that rewrites (+ a b c d) into the
correctly parenthesized version as given above. ptts can
process parse tree lists of variable length, and therefore they
can also implement macros with multiple arguments.
9At the time of this writing, this has not yet been imple-
mented.

(defmacro (+* pts)
(case pts

(%( one two) ‘(+ ,one ,two))
((: head tail) ‘(+ ,head (+* ,@tail )))))

This macro provides a new multi-argument prefix macro +*

that right associatively generates a sequence of additions.
Notice that the macro for +* emits a parse tree containing
a reference to itself.

In general, we can define multi-argument versions of all bi-
nary infix operators. This leads us straight to higher order
parse tree transformers, ptts that generate ptts. With the
higher order ptt, shown in Figure 6, we can lift every Haskell
infix operator to a multi-argument Liskell prefix macro.

(def -binary -fun -as-prefix + left)
(def -binary -fun -as-prefix / left)
(def -binary -fun -as-prefix : right)

6. APPLICATIONS OF
META-PROGRAMMING

6.1 Convenience
In the last section we introduced a simplified version of the
Liskell parse tree named SParseTree. This structure does
not exist, but when you look into the source of the LskPre-
lude, you encounter the use of SSym and SList just in the
manner, as we defined it in the last section. In fact, SSym
and SList are macros providing the illusion of a simple data
structure on top of the slightly more flexible underlying data
structure ParseTree. ParseTree includes an additional data
structure SrcSpan which indicates the point of definition of
this parse tree element. This information is of almost no
value to meta-programming, but must still be present in the
Liskell internal parse tree to generate the Haskell syntax
tree with source location information for meaningful error
reporting. ParseTree also includes a tuple of two strings
for lists that contain the strings prefixing or postfixing the
list brackets as in prefix(1 2 3)postfix. These strings
are used seldom – although we have seen a user, namely
the backquoting ptt – and so they are only optional for the
SList syntax sugar.

The following code snip let provides the convenience macro
for SSym:

(defmacro (SSym %(pt))
‘(PSym noSrcSpan ,pt))

6.2 Language Extension
Haskell does not provide a language construct that allows
the programmer to determinate (in short an simple manner)
whether a specific pattern matches. We can define a short
macro that gives us a new syntax form (~= pat) for such
cases.

(defmacro (~= %(pat))
‘(let ((( comp ,pat) True)

((comp _) False ))
comp))

6.3 Shifting computations to compile-time
Shifting computation to compile time leads to an increase
in run-time performance. Partial evaluation is a powerful
technique in this area but it is not yet available in stan-
dard compilers. Meta-programming can accommodate the
programmer when this kind of optimization is required.



(defmacro -decl (def -binary -fun -as -prefix %( function associativity ))
(let (( function* (mapSymId function (lambda (s) (++ s "*")))))

%(‘( defmacro (,function -new -name pts)
(case (length pts)

(0 (error "Empty infix lift "))
(1 (error (++ "Singular infix lift" (show pts ))))
(2 ‘(,,(quote function) ,@pts))
(_ ,(case associativity

((SSym "right ")
‘‘(,,(quote function) ,(head pts) (,,(quote function *) ,@(tail pts ))))

((SSym "left")
‘‘(,,(quote function) (,,(quote function *) ,@(init pts)) ,(last pts ))))))))))

Figure 6: def-binary-fun-as-prefix

The following example resembles the demonstration of Bezier
curve optimization given in [7] Section 13.2.

A cubic Bezier curve is defined by a start and an end point,
as well as two control point. The following equation defines
the x coordinates of all points on the Bezier curve:

x = (x3 − 3x2 + 3x1 − x0)u
3 + (3x2 − 6x1 + 3x0)u

2+

(3x1 − 3x0)u + x0

The equation for y is identical with xn replaced by yn All
points of the Bezier curve lie on (x, y) for variations of u
in the interval [0, 1]. A usual approach for drawing Bezier
curves in drawing applications is to choose the number of
points to sample for the Bezier curve and connect these sam-
pled points with lines. If the number of samples n is known
in advance, a considerable amount of computation can be
shifted to compile-time by precomputing the powers of u
for the sample points 0, 1

n−1
, 2

n−1
, . . . , n−2

n−1
, 1. The Liskell

regression test suite contains two implementations of Bezier
curve sampling, once as a generic function and once as macro
embedding values of u into expanded code. Benchmarking
these two implementations against each other shows 45%
reduction of run-time for the macro implementation.

6.4 PTTs with side-effects
As ptts run within the TransformationMonad that contains
an IO monad as inner monad, ptts can lift their operations
into the IO monad. We show two applications of IO side
effects, namely private storage and file access.

6.4.1 Private Storage: Interning
The environment transformer also runs within the IO monad.
Whenever a ptt needs to maintain state, the programmer is
able to generate new IORefs in the environment transformer
and put the partially applied ptt into the transformation
chain.

(defenv (lambda (LskEnv e p t d)
(>>= newIORef

(lambda (ref)
(return (LskEnv (ptt ref e)

p t d))))))

A viable application for ptts with side effects is an intern-
ing mechanism. Assume you want syntax sugar to rewrite
String into a different string representation. ghc inter-
nally uses FastString to manage strings. Other applica-
tions might want to keep a list strings in C string represen-
tation.

An example interning mechanism for string could work as
follows: Whenever fs("test-string") is seen by the ex-
pression transformer10, it checks whether ”test-string” is al-
ready part of its interning table. If it is not, it generates a
symbol and puts that symbol associated with the string into
its interning table. The interning table is extended with a
tuple of (new-sym, test-string). The expression trans-
former then replaces the syntax sugar fs("test-string")

either by the freshly generated symbol new-sym or by the
symbol found in the interning table.

In cooperation with a declaration transformer, the intern-
ing mechanism can hold on to its promise and generate the
symbols of its interning table as top-level binding at the end
of the file. So, all interned strings that are identical point
to the same symbol, and the object file potentially shrinks
in size.

6.4.2 Using external resources
Parse tree transformers can consult external resources as
they run within the IO monad.11 An application of this
might be stub code generation for remote procedure calls
out of rpc definition files such as Corba’s idl or sun’s rpc-
gen files. Hibernate for Java uses xml files for object de-
scription and the Java code generator produces stub code
according to these xml files. In Liskell, there is no need for
an external preprocessing stage as with Hibernate, Corba or
sun rpc. An appropriate ptt can generate code at compile-
time by reading the mapping definition file. For persistence
mapping, a level of integration is feasible that might not be
desired because it could lead to subtle bugs, namely gener-
ating data types and stub code by inspecting a running sql
data base.

An unusual, but truly powerful application of using exter-
nal resources would be auto-embedding of foreign language
files. A parse tree transformer could inject a transcription
of C/Python/Perl code into Liskell code. We could also
generate foreign function bindings from C header files.

10This is a singleton parse tree list containing the string “fs”
as prefix. Pre- and postfix strings are omitted from the
simplified parse tree SParseTre but contained in ParseTree.

11This is a powerful feature, but introduces an unexpected
attack vector. Never compile untrusted Liskell code. This
might not lead to new practical restrictions, as the sole pur-
pose of code compilation is code execution, and we all agree
that we do not execute untrusted code.



(defmacro -decl (def -memoized -function
%( function expr))

(let ((tabe (mapSymId (head function)
(lsect ++ "-table "))))

(args (tail function )))
‘((define ,tabe

(unsafePerformIO
(>>= (HashTable.new == hasher)

newIORef ))))
(define ,function

(unsafePerformIO
(>>= (readIORef ,tabe)

(lambda (ht)
(case (lookup ht ([] ,@args ))

(Nothing
(let ((r (,expr ,@args )))

(>> (insert ht
([] ,@args)
r)

(return r))))
((Just r) (return r))))))))))

Figure 7: def-memoized-function

6.5 Brevity: defmemoize
The attention span of humans is limited. The sensory reg-
isters can hold massive amount of data, but to make use of
this information, the brain has to filter relevant parts of this
sensory bombardment and capture it in short term memory.
A bad useful/useless information ratio makes this filtering
task harder and in the case of source code might prevent the
reader from successfully focusing on the key parts.

Abstraction allows the programmer to think in terms of high
level concepts, but we seldom find examples of abstractions
that make the code longer. In the representation of high
level combinations of concepts and components, brevity is
needed to mentally handle programming by abstraction ef-
ficiently. We demonstrate how parse tree transformers help
to unclutter the source code from low-level details, and once
such a concept is understood, it can be signaled to program-
mer merely by a single keyword.

Assume the user of the Tic Tac Toe computer player func-
tion given in the previous section does not have any insight
on how the computer player works. It might use heuristics,
it might play randomly or it might compute the whole game
tree to provide an optimal answer (which it happens to actu-
ally do). The game logic queries the computer player func-
tion after every move made by its opponent and the com-
puter player recomputes its results. With computer players
re-enumerating the game tree completely, this is inefficient
as the answer must have been already computed in previous
queries. By caching the results we can deliver the answer
straight from the cache for subsequent queries.

In Lisp, there is a macro toolkit called memoize [5] that pro-
vides the programmer with a new function-defining top-level
form def-memoized-function. It works exactly as the reg-
ular cl’s defun with the exception that input-output pairs
are cached, and whenever an already computed input is seen
the cached result is returned.

We can easily write def-memoized-function as parse tree
transformer in Liskell as shown in Figure 7. To work as a
drop-in replacement for define, we allow ourselves to use

unsafePerformIO to cache the results. This does not vio-
late referential transparency. Instead of defining the func-
tion itself we define a wrapper around the function’s body
which is contained in expr. The wrapper performs a hash
table lookup for the function’s arguments contained in args.
The first define form declares this hash table that goes by
the name of the function suffixed with "-table". We could
also use the fresh name source gensym which is provided
by TransformationMonad. In the event of an unsuccess-
ful lookup, the wrapper adds the result r to the hash ta-
ble before returning it. For the wrapper, we assume that
hasher is a hash function according to the requirements of
the Data.HashTable implementation.

After defining this macro, all we have to do is to replace

(define (computer-player state ego) ..)

with

(def-memoized-function (computer-player state ego)

..)

Once the programmer has embraced the concept of memo-
ization, he does not have to search for the valuable functions
body which would be hidden in a deeply nested let of the
wrapper. A single keyword efficiently communicates to the
programmer the simple but powerful concept of memoiza-
tion for functions. This successfully combines abstraction
with brevity.

Other examples where brevity fosters productivity and hides
distracting details are instance generation by the Haskell
deriving syntax, field syntax, and Haskell Regular Pat-
terns.

6.6 Embedded Languages: Prolog
Liskell can be used to embed any language that can be trans-
lated into typed lambda calculus. The Liskell regression test
suite features a Prolog ptt that can be argue to be a Prolog
compiler in its own right. It works by translating Prolog
clauses into Liskell functions guided by the concepts intro-
duced by Claessen and Ljunglöf in their paper on Prolog
embedding in Haskell[6].

The Prolog file ends with the use of the path finding clause
in a graph described by edge:

(<- (path X X (: X [])))
(<- (path X Z (: X Nodes ))

(edge X Y)
(path Y Z Nodes))

in the inference statement

(define main
(putStrLn (show (with -inference (path a e Xs)

xs))))

The Prolog embedding compiler can be divided into three
parts:

• Helper functions such as Prolog primitives, a unifica-
tion algorithm and the Prolog syntax and data adts,



• Meta-programming: a parse tree transformer collect-
ing all toplevel Prolog statement and turning them into
functions. This process is modelled according to [6].
with-inference provides a convience macro to access
Prolog inference.

• Source code defining Prolog predicates and using Pro-
log inference.

7. CONCLUSIONS AND FUTURE WORK
This paper demonstrates the successful application of meta-
programming paradigms to a pure functional programming
language by employing symbolic expressions as syntax form.

GHC. Most of future work consists of pragmatic improve-
ments of ghc for Liskell programming. Error reporting has
to be improved to aid regular programming as well as for
meta-programming. One aspect of the Lisp family is that
most of the implementations contain an interactive environ-
ment known as repl – short for read-eval-print loop. ghc
includes ghc interactive, or short ghci. When judged by
the features of a regular repl, ghci seems inferior.

Liskell design. ghc contains a numerous of extensions that
are not yet accessible by Liskell. It has to be completed
in the following areas: foreign function interface declara-
tions, Haddock documentation, tuple unboxing, gadt dec-
larations, pattern guards, functional dependencies in type
classes, existential quantification, rewrite rules, bang pat-
terns, pragmas.

There are two obvious short comings in the Liskell design
when it comes to meta-programming: defmodule is not sub-
ject to parse tree transformation. A possible solution is
to introduce a malleable module information that can be
changed throughout the compilation process. Further, dis-
patchers are not imported into the compiler-environment au-
tomatically. Adding all the dispatchers provided by Liskell
Prelude is cumbersome and mostly template code. An ele-
gant solution for these two problems still have to be found.

Development Tools. slime[1] provides an excellent cl de-
velopment environment for Emacs. A current effort by Benedikt
Schmidt is extending slime in his Shim project[12] to pro-
vide a better development environment for Haskell. As slime
already understands symbolic expression syntax very well,
and Shim closes the gap to ghc-api, there seems to be a
good foundation to build a Liskell development environment.

7.1 Meta-programming
Denotational Semantics. Languages given with their de-
notational semantics can be translated quite easily. Scheme
in Liskell should be ease to realize.

More general, we should be able find a uniform description
language for denotational semantics. Denotation semantics
can be seen as a set of transformation rules how to trans-
form a source language into lambda calculus. We can create
transformers that turn the denotation description language
into a series of parse tree transformers that transform the
source language into Haskell as Haskell is very close to the
lambda calculus. At the end, we could capture the semantics

of the denotational description language in denotational se-
mantics too and create meta-circular transformer that takes
itself as input and gives itself as output. But we leave this
as an exercise to the hedonistic reader.

Dependent Types in Liskell. Defining translation rules for
expressions is not new, denotation semantics publications
exist since 30 years. A rather new area of research is simu-
lating richer type systems on traditional type systems. The
papers by McBride [11] as well as Apple and Weimer [3] lay
out strategies on how to simulate a dependent type system
with the Haskell type system. Applying meta-programming
techniques to extend the type system of a language is a
rather new approach and it might push the limits of meta-
programming as research tool further.

8. REFERENCES
[1] SLIME: The Superior Lisp Interaction Mode for

Emacs. http://common-lisp.net/project/slime/.

[2] American National Standards Institute and
Information Technology Industry Council.
Programming language – Common LISP, 1996.

[3] J. Apple and W. Weimer. Simulating Dependent Types
with Guarded Algebraic Datatypes.
http://www.cs.virginia.edu/~jba5b/singleton/.

[4] A. Bawden. Quasiquotation in Lisp.
http://citeseer.ist.psu.edu/

bawden99quasiquotation.html, 1999.

[5] T. Bradshaw. Memoize Library.
http://www.cliki.net/memoize.

[6] K. Claessen and P. Ljungl. Typed logical variables in
Haskell. http://citeseer.ist.psu.edu/
claessen00typed.html, 2000.

[7] P. Graham. On Lisp: advanced techniques for
Common Lisp. Prentice-Hall,
http://www.paulgraham.com/onlisp.html, 1994.

[8] S. P. Jones. Haskell 98: The Revised Report.
http://research.microsoft.com/~simonpj/

haskell98-revised/, Jan 2003.

[9] S. Marlow. Happy, the parser generator for Haskell.
http://www.haskell.org/happy/.

[10] S. Marlow. Scanner Generator Alex.
http://www.haskell.org/alex/.

[11] C. McBride. Faking it—simulating dependent types in
Haskell. http://citeseer.ist.psu.edu/
mcbride01faking.html, 2001.

[12] B. Schmidt. Shim.
http://shim.haskellco.de/trac/shim.

[13] T. Sheard and S. P. Jones. Template
metaprogramming for Haskell.
http://research.microsoft.com/Users/simonpj/

papers/meta-haskell/meta-haskell.ps, 2002.

[14] Haskell Wiki. Books and Tutorials on Haskell.
http://haskell.org/haskellwiki/

Books_and_tutorials.

 http://common-lisp.net/project/slime/
http://www.cs.virginia.edu/~jba5b/singleton/
http://citeseer.ist.psu.edu/bawden99quasiquotation.html
http://citeseer.ist.psu.edu/bawden99quasiquotation.html
http://www.cliki.net/memoize
http://citeseer.ist.psu.edu/claessen00typed.html
http://citeseer.ist.psu.edu/claessen00typed.html
http://www.paulgraham.com/onlisp.html
http://research.microsoft.com/~simonpj/haskell98-revised/
http://research.microsoft.com/~simonpj/haskell98-revised/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://citeseer.ist.psu.edu/mcbride01faking.html
http://citeseer.ist.psu.edu/mcbride01faking.html
http://shim.haskellco.de/trac/shim
http://research.microsoft.com/Users/simonpj/papers/meta-haskell/meta-haskell.ps
http://research.microsoft.com/Users/simonpj/papers/meta-haskell/meta-haskell.ps
http://haskell.org/haskellwiki/Books_and_tutorials
http://haskell.org/haskellwiki/Books_and_tutorials

	Introduction
	Design principles
	The common and the rare

	Language Definition
	The Lexer and The Parser
	Expressions
	Patterns
	Bindings
	The generic E-binder
	ET/TE funbinder

	Types
	Constrained type forms

	Top Level
	Modules
	Definitions

	Examples

	Meta-Programming In Liskell
	Liskell Parse Trees
	Parse Tree Transformers
	The real model
	Environment Transformers
	cond-ptt revised


	The Liskell Prelude
	Simple List
	The Dispatcher Namespace
	Quoting
	Quasiquotation
	The Parseable Type Class

	defmacro
	Derive -- Type Class Instance Generation
	Field Syntax: sugar for updates
	Infix to multi-argument prefix

	Applications of Meta-Programming
	Convenience
	Language Extension
	Shifting computations to compile-time
	PTTs with side-effects
	Private Storage: Interning
	Using external resources

	Brevity: defmemoize
	Embedded Languages: Prolog

	Conclusions and Future Work
	Meta-programming

	References

