
A Guided Tour of CLIM,
Common Lisp Interface Manager

2006 Update
Clemens Fruhwirth <clemens@endorphin.org>

The McCLIM Project

Original article∗

Ramana Rao <rao@xerox.com> Xerox Palo Alto Research Center
William M. York <york@ila.com> International Lisp Associates, Inc.
Dennis Doughty <doughty@ila.com> International Lisp Associates, Inc.

January 25, 2006

Abstract

The Common Lisp Interface Manager (CLIM) pro-
vides a layered set of facilities for building user in-
terfaces. These facilities include a portable lay-
ers for basic windowing, input, output services,
and mechanisms for constructing window types and
user interface components; stream-oriented input
and output facilities extended with presentations
and context sensitive input1; and a gadget-oriented
toolkit similar to those found in the X world ex-
tended with support for look and feel adaptiveness.
In this article, we present an overview of CLIM’s
broad range of functionality and present a series of
examples that illustrates CLIM’s power. The arti-
cle originally appeared in Lisp Pointers in 1991 and
was updated in 2006 by Clemens Fruhwirth.2 All
examples in this article have been developed with
McCLIM[McC], a free CLIM implementation.

∗Published in Lisp Pointers 1991
1Similar to the work pioneered in the Genera UI system
2The CLIM 2 specification changed significant parts of

CLIM rendering legacy code unusable. Clemens Fruhwirth
has rewritten all examples and the corresponding text sec-
tion for the CLIM 2 specification. In addition, he restruc-
tured the whole article and added text sections to provide
additional insights into CLIM concepts.

Introduction

Common Lisp is a language standard that has pro-
vided a broad range of functionality, and that has,
to a large degree, successfully enabled the writing
of truly portable Lisp programs. The emergence
of CLOS and the cleanup efforts of Ansi X3J13
have further enhanced the utility and portability
of Common Lisp. However, one major stumbling
block remains in the path of those endeavoring to
write large portable applications. The Common
Lisp community has not yet provided a standard
interface for implementing user interfaces beyond
the most basic operations based on stream reading
and printing.3

The Common Lisp Interface Manager addresses
this problem by specifying an interface to a broad
range of services necessary or useful for developing
graphical user interfaces. These services include
low level facilities like geometry, graphics, event-
oriented input, and windowing; intermediate level
facilities like support for Common Lisp stream op-
erations, output recording, and advanced output
formatting; and high level facilities like context sen-
sitive input, an adaptive toolkit, and an application
building framework.

3Notice that this sentence was written in 1991. Unfortu-
nately, it is still true 15 years later.

1

CLIM will eventually support a large number of
window environments including X Windows, Mac
OS X and Microsoft Windows. CLIM is designed
to exploit the functionality provided by the host
environment to the degree that it makes sense.
For example, CLIM top level windows are typically
mapped onto host windows, and input and output
operations are ultimately performed by host win-
dow system code. Another example is that CLIM

supports the incorporation of toolkits written in
other languages. A uniform interface provided by
CLIM allows Lisp applications programmers to deal
only with Lisp objects and functions regardless of
their operating platform.

An important goal that has guided the design of
CLIM has been to layer the specification into a num-
ber of distinct facilities. Furthermore, the specifi-
cation does not distinguish the use of a facility by
higher level CLIM facilities from its use by CLIM

users. For example, the geometry substrate, which
includes transformations and regions, is designed
for efficient use by the graphics and windowing sub-
strates as well as by CLIM users. This means that,
in general, a CLIM user can reimplement higher
level CLIM facilities using the interfaces provided
by lower level facilities.

This modular, layered design has a number of
benefits. The CLIM architecture balances the goal
of ease of use on one hand, and the goal of versa-
tility on the other. High level facilities allow pro-
grammers to build portable user interfaces quickly,
whereas lower level facilities provide a useful plat-
form for building toolkits or frameworks that better
support the specific needs or requirements of a par-
ticular application.

For example, CLIM’s application framework and
adaptive toolkit allow users to develop applications
that automatically adopt the look and feel of the
host’s environment. (We often call this “adap-
tiveness,” “look and feel independence,” or occa-
sionally more picturesquely, “chameleon look and
feel”.) However, many users may need or want to
define a particular look and feel that stays constant
across all host environments (we call this ”portable
look and feel”). Such users can circumvent the
look and feel adaptiveness provided by CLIM, while
still using most of the application framework facil-
ity and other high level CLIM facilities like context
sensitive input. Furthermore, using the lower level
facilities of CLIM, they can develop portable toolkit

libraries that define and implement their own par-
ticular look and feel. For instance, the CLIM user
can implement new gadget types on top of the
drawing primitives and treat them equally to the
build-in gadget types.

We will use the term CLIM implementor for the
party implementing low-level and high-level parts
according to the CLIM specification, CLIM pro-
grammer for the party that will use the facilities
provided by the implementor, and CLIM user for
the party that will use the programs provided by
the programmer.

The next section presents an overview of the
functionality provided by CLIM facilities.

1 Overview of Functionality

Figure 1 shows the various aspects of a host envi-
ronment in which CLIM lives as well as the various
elements provided by CLIM. Below we briefly de-
scribe a number of CLIM’s areas of functionality.
Later sections will illustrate many of these compo-
nents.

Geometry CLIM provides points, rectangles,
and transformations; and functions for manipulat-
ing these object types.

Graphic substrate CLIM provides a portable
interface to a broad set of graphics functions for
drawing complex geometric shapes.

Windowing substrate CLIM provides a
portable layer for implementing sheets (windows
and other window-like objects).

Extended Streams CLIM integrates the Com-
mon Lisp Stream I/O functionality with the CLIM

graphics, windowing, and panes facilities. Next to
ordinary text, the programmer can send a button,
a picture or any other arbitrary widget to a CLIM

output stream and CLIM will display the widget in
the sheet associated with the output stream.

Output Recording CLIM provides output
recording for capturing all output done to an
extended stream and automatically repainting it
when necessary.

2

Application

Common Lisp

Dialog Facilities PresentationsCommands

Output Recording

Host Look & Feel

Frames

Panes

Layout Panes

Sheet Definition
Graphics

Geometry
Ports

Application Panes
Gadget Panes

Incremental Redisplay
Formated Output

Standard Sheets
Extended Streams

Figure 1: An Overview of CLIM facilities

Formatted Output CLIM provides a set of high-
level macros that enable programs to produce
neatly formatted tabular and graphical displays
easily.4

Presentations CLIM provides the ability to asso-
ciate semantics with output, such that Lisp objects
may be retrieved later via user gestures (e.g. mouse
clicks) on their displayed representation. This con-
text sensitive input is modularly layered on top of
the output recording facility and is integrated with
the Common Lisp type system. A mechanism for
type coercion is also included, providing the basis
for powerful user interfaces.

Panes CLIM provides panes that are analogous to
the gadgets or widgets of toolkits like the X toolkit,
GTK or Mac OS X’s toolkit.

Supported pane types include layout panes for
arranging other panes, gadget panes for present-
ing users with feedback information or mechanisms
for invoking application behavior, and application
panes for displaying and allowing users to interact

4This also includes Graph Formatting

with application data.

Look and Feel Adaptiveness CLIM supports
look and feel independence by specifying a set of
abstract gadget pane protocols. These protocols
define a gadget in terms of its function and not in
terms of the details of its appearance or operation.
Application that use these gadget types and related
facilities will automatically adapt to use whatever
toolkit is available and appropriate for the host en-
vironment. In addition, portable Lisp-based imple-
mentations of the abstract gadget pane protocols
are provided.5

Application Building CLIM provides a set of
tools for defining application frames. These tools
allow the programmer to specify all aspects of
an application’s user interface, including pane lay-
out, interaction style, look and feel, and command
menus and/or menu bars.

5McCLIM does not support look and feel adaptiveness
at the moment except for the experimental port for Mac OS
X. Hence, McCLIM mostly uses this portable Lisp-based
implementation.

3

Commands CLIM supports the separation of
command execution and command invocation. A
CLIM user can invoke commands either via typ-
ing it into an interactor, clicking on a menu entry
or implicitly invoking a presentation-translator by
clicking on a presentation. Commands can also be
invoked explicitly by the programmer.

Dialogs and Incremental Update Incremen-
tal Redisplay goes a bit further than Output
Recording. With Incremental Redisplay, an out-
put record can not only reproduce content that was
written to a stream, the CLIM programmer can also
attach the code that generated the content to the
content itself. Whenever necessary, the application
programmer can ask an output stream to update
itself. CLIM will query all code generators and in
case, replace obsolete content.

These are a lot of facilities to explore. The most
systematically way – exploring from the most low-
level to the most high-level – would also be the
most longsome. Therefore, we start with showing
several facilities in action with the most fundamen-
tal example in the realm of programming: Hello
World.

2 Our first application

We will spend a few lines of code for the trivial
Hello World example to give the reader a test case
to verify his CLIM setup. It also serves as a point
of reference from where the reader can start his ex-
plorations for more challenging CLIM facilities. We
do not try to elaborate the CLIM concepts in de-
tail here, but simply use them with a brief discus-
sion. The confused reader may hope for a more in-
depth explanation in the following section. Please
regard pane, application frame, sheet, sheet hierar-
chy, graft and top-level loop as terms we will dis-
cuss later.

Also, we conduct excessive CLIM specification
referencing in footnotes. The motivation for this
is to show that all the relevant information can be
found in the CLIM 2 specification[SM05]. Before a
good CLIM programmer can master any CLIM con-
cept, he has to get used to the style of writing of the
specification first as this is the most relevant work
for CLIM. The best we can do in this context is to

provide pointers and references and hope that the
interested reader starts to explore the surrounding
text sections on his own.

The central element of CLIM application pro-
gramming is the application-frame. An application
frame is defined via define-application-frame.6 Here
comes the application frame for Hello World:

(d e f i n e−app l i c a t i o n− f r ame he l l o−wor l d ()
((g r e e t i n g : i n i t f o rm ” He l lo World”

: a c c e s s o r g r e e t i n g))
(: pane (make−pane ’ he l lo−wor ld−pane)))

Its basic syntax is similar to defclass because
define-application-frame also generates classes. In
this case, it creates a frame class hello-world that
has no superclass except frame which is added au-
tomatically.

With :pane, we define a top-level-pane that be-
comes the content of the fresh window that belongs
to an application frame. But sometimes, an appli-
cation frame is swallowed by another application
and only space in an other existing window is re-
served. For instance, a web site management tool
might swallow a text editor, so the user has the op-
tion to edit web sites without switching to another
application.

The list given after the :pane option is a form
which is evaluated when an instance of the hello-
world class is created. We use make-pane to con-
struct a pane as the top-level-pane for frame in-
stances. make-pane is a constructor for panes.7 We
can treat it as make-instance especially made for
pane classes. Let us have a look at the definition
of hello-world-pane.

(d e f c l a s s he l lo−wor ld−pane
(cl im−stream−pane) ())

The one and only superclass of hello-world-pane
is clim-stream-pane8. As there are no additional
slot, an experience CLOS user might have correctly
guessed that we will use hello-world-pane solely for
method specialization.

But before we do that, let us have a look what
we have actually inherited from clim-stream-pane9:

6See Section 28.2 “Defining and Creating Application
Frames” in [SM05].

7See Section 29.2 “Basic Pane Construction” in [SM05].
8See Section 29.4 “CLIM Stream Panes” in [SM05].
9Internal classes removed from Listing

4

; ; ; Behavior de f i ned by the Handle Repaint Pro toco l
(defmethod hand l e− r epa i n t ((pane he l lo−wor ld−pane) r e g i o n)

(l e t ((w (bound ing− rec tang le−width pane))
(h (bound ing− r e c tang l e−he igh t pane)))

; ; Blank the pane out
(d raw− r ec tang l e ∗ pane 0 0 w h

: f i l l e d t
: i n k (pane−background pane))

; ; Draw g r e e t i n g in cen te r o f pane
(draw−text∗ pane

(g r e e t i n g ∗ app l i c a t i o n− f r ame ∗)
(f l o o r w 2) (f l o o r h 2)
: a l i gn−x : c e n t e r
: a l i gn−y : c e n t e r)))

Figure 2: handle-repaint for hello-world-pane

CLIM−USER> (d e s c r i b e (f i n d− c l a s s
’ cl im−stream−pane))

DIRECT−SUPERCLASSES :
PERMANENT−MEDIUM−SHEET−OUTPUT−MIXIN
STANDARD−REPAINTING−MIXIN
STANDARD−EXTENDED−INPUT−STREAM
STANDARD−EXTENDED−OUTPUT−STREAM
STANDARD−OUTPUT−RECORDING−STREAM
SHEET−MULTIPLE−CHILD−MIXIN
BASIC−PANE

basic-pane is the foundation of all pane classes. It
provides reasonable defaults for all protocol meth-
ods and inherits from the protocol class pane. In
turn, pane inherits from basic-sheet. Hence, all
panes we construct via basic-pane automatically ad-
here to the sheet protocol.

Our hello-world-pane needs some methods to be
useful. With handle-repaint in Figure 2, we partic-
ipate in the repaint protocol.10 This method has
two tasks: paint the pane with the pane’s back-
ground and draw the greeting of *application-frame*
in the center of the pane. The hello-world frame in-
stance is automatically available in the context of
handle-repaint via the dynamically scoped variable
application-frame and so it is possible to use the
accessor greeting to obtain the instance’s slot con-
tent.

Two functions are needed to see this code in
action: make-application-frame and run-frame-top-
level. The former is a constructor for instances of
frame classes, the latter for running the top-level

10See Section 8.4 “Repaint Protocol” in [SM05]

loop of the application frame. The top-level loop
is used for command reading, execution and dis-
playing results. But all we need to know for the
moment is that it makes the frame visible before
entering the loop.

(run− f rame−top− l eve l
(make−appl icat ion− f rame ’ he l l o−wor l d))

This completes the Hello World example. In the
next section, we catch up to the details we skipped
in this example.

3 Basic Facilities

3.1 Geometry

To CLIM, geometry means regions. A region is ei-
ther bound or unbound and has a dimensionality
of either zero, one or two. That corresponds to
a point, a path or an area respectively. Regions
can be compared (region predicate protocol11) and
composed (region composition protocol).

Every bounded region has a bounding rectangle.
It is the smallest rectangle that contains every point
in the region. The bounding rectangle of every

11CLIM relays heavily on CLOS. In CLOS, the term pro-
tocol means a set of generic functions that together form a
coherent interface. A protocol specification does not only
include the syntactic details of the function names and the
number of function arguments, but also the functions pur-
pose and the semantic of the return values (and/or side ef-
fects) must be given in a textual specification.

5

bounded region can be accessed via the bounding
rectangle protocol.

CLIM supports affine transformations of regions.
Such transformations can move, stretch and rotate
a region. A transformation is affine when every
straight line remains straight after transformation.
Transformations can be composed arbitrarily. The
programmer can attach transformations to medi-
ums and panes. In layout panes, CLIM uses trans-
formation to map the coordinates of children panes
to the coordinate system of its parents. All draw-
ing settings can be changed permanently, or in the
context of a with-drawing-options macro temporar-
ily.

3.2 The Windowing Substrate

CLIM does not directly talk to the window system.
Instead, CLIM is layered on top of a windowing
substrate12. This substrate is a middleware be-
tween CLIM on one side and the host window sys-
tem on the other. This middleware layer provides
a portable windowing model that insulates higher
levels of CLIM and CLIM programmers from the de-
tails of the host window system. From the perspec-
tive of a CLIM programmer, talking to the window
system is equal to talking to this abstraction layer.
The implementation details are hidden in backends,
like in McCLIM the CLX backend, which hides X11
details, or the beagle backend, which hides details
for Mac OS X’s toolkit. These backends will use the
services of a host window system to provide efficient
windowing, input and output facilities. Thanks to
this middleware, CLIM is portable across different
host windowing systems.

This framework allows uniform treatment of the
following GUI building blocks:

• Windows like those in X, Mac OS X and Mi-
crosoft Windows.

• Gadgets typical of toolkit layers, such as GTK,
QT or Mac OS X’s toolkit. The backend pro-
vides a frame manager which takes care of
mapping the abstract gadget types found in
CLIM to appropriate gadget with a native look
and feel.

• Structured graphics like output records and an
application’s presentation objects

12former Silica

The central abstraction specified by CLIM is the
sheet. A sheet is a surface that can be painted on
and to which input gestures can be directed, and
that lives in a hierarchy of other such objects. To
get used to the notation of sheets, you can think of
them as swallowable windows.

The fundamental notion in CLIM is the nesting
of sheets within another sheet called a windowing
relationship. In a windowing relationship, a par-
ent sheet provides space to or groups a number of
other children sheets. The sheet protocols specify
functionality for constructing, using, and managing
hierarchies of sheets.

Sheets have the following properties:

parent/children: a sheet is part of a windowing
hierarchy and maintains links to its parent and
its children.

coordinate system: a sheet has its own coordi-
nate system that might have a different scaling
or orientation than its parent.

transformation: via a sheet transformation these
differing sheet coordinate systems are mapped
into coordinate system of their parents.

clipping region: defines an area within a sheet’s
coordinate system that indicates the area of
interest.

Window hierarchies Sheets participate in a
number of protocols. The windowing protocols
describes the relationship between sheets. Every
sheet has a parent, a sheet might have one or more
children. A sheet can be adopted by a parent sheet
and disowned later. A sheet is grafted when it is
connected to a graft either directly or through it’s
ancestors. A graft is a special kind of sheet that
stands in for a host window, typically a root win-
dow (i.e. screen level). A sheet is attached to a
particular host window system by making it a child
of an associated graft. A host window will be allo-
cated for that sheet; the sheet will then appear to
be a child of the window associated with the graft.

Sheet hierarchies are displayed and manipulated
on particular host window systems by establishing
a connection to that window system and attaching
them to an appropriate place in that window sys-
tem’s window hierarchy. Ports and grafts provide
the functionality for managing this process. A port

6

is a connection to a display service that is respon-
sible for managing host window system resources
and for processing input events received from the
host window system.

Window input The input architecture of the
windowing substrate allows sheets to receive any
window event from the host windowing sys-
tem. The event class hierarchy descends from
the class event to device-event (including all key-
board and mouse actions), window-event (window-
size-changed and window-repaint events), window-
manager-events (window-deleted) to artificial timer-
events. See 8.2 “Standard Device Events” in
[SM05].

The function pair dispatch-event and handle-event
is the center of all event handling. dispatch-event
is intended to be called when an event is to be dis-
patched to a client either immediately or queued
for later processing in an event queue. On the
other side, handle-event is intended for further spe-
cialization, so the application developer can im-
plement special policies for selected events. For
instance, when a sheet notices through a window-
configuration-event that the sheet’s size changed, it
might redo its layout for its children panes.

Window output All drawing operation happen
on a medium. This object captures the state of
the drawing like foreground, background, line style,
and the transformation which is applied to the co-
ordinates before drawing. Every medium is associ-
ated with a sheet. In turn, a sheet must be asso-
ciated with a medium whenever drawing operation
should be executed. Many CLIM sheets are asso-
ciated with a medium permanently. sheet-medium
obtains the medium associated with a sheet.

The graphic output capabilities of sheets range
from simple line style and text style customization
over rendering various geometrical shapes, a color
model capable of doing alpha blending, compos-
able affine transformations to pattern, stencil and
tiling filling, and pixmaps usage. The features of
the output protocol are specified briefly in Section
8.3 “Output Protocol”and more precisely in Chap-
ters 10-14 of [SM05].

CLIM lives in idealized world in terms of graph-
ics operations. A CLIM programmer can use an
infinitely long and wide drawing pane with an ar-

bitrary precise resolution and continuously variable
amount of opacity. As rendering devices with these
properties are rare these days, we need to render
the idealized graphic description to a device with
finite size and a fixed drawing precision. The ren-
dering rules are specified in Section 12.4 “Render-
ing Conventions for Geometric Shapes”of [SM05].

4 Building Applications

In this section, we explain a number of the neces-
sary ingredients for building applications in CLIM.
We will illustrate frames, panes, and simple com-
mands with two examples: a color editor and a
simple line and text drawing program.

4.1 Application Frames

Frames are the central abstraction defined by the
CLIM interface for presenting an application’s user
interface. Many of the high level features and facil-
ities for application building provided by CLIM can
be conveniently accessed through the frame facility.

Frames are typically displayed as top level win-
dows on a desktop. Frame managers provide the
machinery for realizing frames on particular host
window systems. A frame manager acts as an medi-
ator between the frame and what is typically called
a desktop manager, or in X terminology, a window
manager. The frame manager is responsible for at-
taching the pane hierarchy of a frame to an appro-
priate place in a sheet hierarchy (and therefore to
a host window system window hierarchy) when the
frame is adopted.

To build a user interface, an application pro-
grammer defines one or more frames classes. These
frame classes define a number of frame properties
including application specific state and a hierarchy
of panes (i.e. user interface gadgets and regions
for interacting with the users). Frame classes also
provide hooks for customizing application behavior
during various portions of the frame protocol. For
example, an :after method on generic functions in
the frame protocol can allow applications to man-
age application resources when the frame is made
visible on some display server.

CLIM is able to show dialog windows, but the
code that brings them up is usually quite different
from the code that is used to generate the content of

7

application frames. This is unusual for a window-
ing toolkit as most of them unify the generation of
dialog content and content of other windows types.

CLIM generates a dialog with the appropriate
input gadget as consequence of a series of input
requests. Thanks to the stream facility, the pro-
grammer can actually request input synchronously
with a blocking read request. He does not have
to take care of asynchronously handling confirma-
tion or cancel button clicks. For instance, the pro-
grammer requests a string from the user and the
user is presented with a prompt, an editable text
field, and two buttons for confirmation and cancel-
ing. Only after the user hit the confirmation but-
ton, the string requesting function returns and the
programmer can directly use the function’s return
value which is the user provided string. A cancel
button click is handled via throwing an abort tag.

From the callers perspective, an attempt to sep-
arate application frames and dialogs could be: a di-
alog window itself is side-effect free with respect to
the application state and therefore the whole sense
of calling a dialog creation routine must arise from
the values it returns. For example, the code that
modifies the state of the text editor in a text-replace
operation does not rest with the callback code of
the Ok button in the dialog. This task rests with
the code that is executed after the dialog returns
its values, namely the code of the Search/Replace
command.

An intermediate dialog is something that is
brought up to collect additional information for (or
before) an operation. When the user selects the
“Search” command, he is queried for a search string
in an additional dialog window; probably offering
other search options like case insensitive search or
backwards search. This is done in a synchronous
manner, blocking until the requested input is made
available by the user.

An application frame is an interface that provides
the user with a variety of commands to choose as
his next step. For instance, the user may choose
from commands like Open, Save, Search, or Quit.
The frame is a long-living GUI object compared
to dialogs and there is no linear execution path as
there is in after a dialog as the user is free to select
any commands he likes as next step.

Hence, the synchronous programming pattern for
dialogs is more convenient because after dialog con-
firmations there is a predetermined path of execu-

tion, while an application frame has to be prepared
to handle an arbitrary sequence of commands.

4.2 Panes

An application frame constructs its pane tree by
specifying a top-level pane in define-application-
frame. This pane is usually a layout pane that
contains more gadget and/or layout panes as its
children. With the help of layout panes, a pane
hierarchy can be constructed. The top-level pane
(and the whole hierarchy when its a layout pane)
is created when the application frame is adopted
by a frame manager and made visible to the user.
The programmer can compose an interface consist-
ing of pre-defined gadget panes, layout panes, or
application-specific panes. CLIM panes are rectan-
gular sheets that are analogous to the gadgets or
widgets of other toolkits.

Panes and sheets as defined by the windowing
substrate have in common that they are associated
with a region on screen, a parent, and optional chil-
dren. They differ in their usage of the input and
output capabilities. A sheet is passive and intended
for others to be used, while a pane already contains
this active part. This relationship leads that panes
are implemented as subclasses of basic-sheet aug-
menting the class with an active part. For instance,
a button-pane actively draws its own button repre-
sentation on its allotted screen area and a click on
the correct button area triggers a callback for the
button. A composite pane lays out its children el-
ements and request them to draw themselves onto
specific screen regions.

CLIM comes with a set of predefined gadget
panes. They consist of push-button, toggle-button,
slider, radio-box, text-field, text-editor panes ready
for use by the CLIM application programmer.
These gadgets might be remapped to native system
gadgets by the frame manager, so a native look and
feel is possible.13

Each gadget pane class is associated with a set
of generic functions that as callbacks in traditional
toolkits. For example, a pushbutton has an “ac-
tivate” callback method which is invoked when its
button is pressed. For this particular callback, a
method named activate-callback is invoked per de-

13Only possible in McCLIM with the experimental beagle
backend for Mac OS X.

8

fault and a CLIM programmer can provide a spe-
cialized method to implementation application spe-
cific behavior for a subclassed button-pane. But
except in the case where the programmer needs
a lot of buttons with related behavior, creating
a subclass for changing a single specific callback
is not economical. Hence upon gadget creation,
the programmer can specify an alternative callback
method for all callback available. By providing
the :activate-callback initarg, the programmer can
change the callback to any regular or generic func-
tion. By convention, all callbacks can be changed
by providing an initarg keyword equal to the call-
back’s name. See Chapter 30 in [SM05] for a listing
and description of available callbacks.

CLIM also provides composite and layout panes.
These pane types are used for aggregating several
children panes into a bigger single pane that has a
layout according to the requested directives. For
example, CLIM provides two pane classes, hbox-
pane and vbox-pane, that lay out their children in
horizontal rows or vertical columns respectively.
The parent/child relations are managed via the
sheet’s windowing protocol. If the user interface
does not change in ways unpredictable in advance
(as in a user interface builder for instance), the pro-
gram does not have to do hierarchy management
via the windowing protocol. He is provided with
a set of convenience macros that allows elegant in-
terfaces composed simply by wrapping the respec-
tive pane construction code into the convenience
macros.

Application pane classes can be used for sub-
classing. They can be used to present application
specific data – for instance by specializing handle-
repaint – and manage user interactions – for in-
stance by specializing handle-event.

4.3 Commands

Most applications have a set of operations that can
be invoked by the user. In CLIM, the command fa-
cility is used to define these operations. Commands
support the goal of separating an application’s user
interface from its underlying functionality. In par-
ticular, commands separate the notion of an opera-
tion from the details of how the operation is invoked
by the user.

Application programmers define a command for
each operation that they choose to export as an ex-

plicit user entry point. A command is defined to
have a name and a set of zero or more operands, or
arguments. These commands can then be invoked
using a variety of interaction techniques. For ex-
ample, commands can be invoked from menu, key-
board accelerators, direct typein, mouse clicks on
application data, or gadgets.

The commands are processed in a REPL-like
loop. Every application frame has its own run-
ning top-level loop specified via :top-level in define-
application-frame. For a CLIM application, it is
rarely necessary to change the default top level
loop.

The top-level loop becomes visible when an
interactor-pane is added to the user interface. Here
the CLIM user gains direct access to the command
loop. The loop steps are similar to read-eval-print:

1. Read a command.

2. Execute the command.

3. Run the display function for each pane in the
frame associated with the top-level loop as nec-
essary.

Whenever a command is invoked other than
by typing, an appropriate command-invoking text
appears after the command prompt nonetheless.
Here, the user can directly see how his commands
are synthesized from other invocation methods like
pointer clicks or menu item selections.

5 Simple applications

5.1 Color Editor

In this next example, we define a frame for color se-
lection by manipulating their red, green, and blue
components separately. This example illustrates
the use of gadget panes provided by CLIM. In the
code in Figure 3, we define an application frame
using define-application-frame. As said before, the
syntax of this macro is similar to defclass. It de-
fines a new frame class which automatically inher-
its from the class frame which provides most of the
functionality for handling frames.

One requirement must be fulfilled by all frame
definitions: code to generate a pane hierarchy must
be supplied. The :pane option is the simplest way to
supply this code. hello frame constructs a hierarchy

9

with only one application pane via make-pane. The
pane hierarchy of color editor is more interesting.

Every pane can request space via its initarg. A
request for space allocation is specified as a pre-
ferred size (:height, :width), a maximum size (:max-
height, :max-width), and a minimum size (:min-
width, :max-width). The special constant +fill+ can
be used to indicate the tolerance for any width or
height.

The color editor frame uses three application
slots for storing the current RGB values as well
as two panes for showing the currently selected col-
ors. The variable *application-frame* is dynami-
cally scoped and is defined in any event handler as
well as for all code that is evaluated in the context
of the :pane(s) frame option.

The code provided in the :pane option in Figure
3 uses all three kinds of panes provided by CLIM.
It uses two application-panes to display colors, two
layout panes (vbox-pane and hbox-pane) and three
gadget panes (slider-pane).

In contrast to hello-world, we do not need a spe-
cialized pane class here. We can use an application-
pane for displaying chosen colors. An applica-
tion pane supports graphics operations and invokes
generic functions on the pane when input events
are received. For the color editor, we only need its
ability to refresh its background color.

The vertically and horizontally convenience
macros provide an interface to the hbox-pane and
vbox-pane classes. Most CLIM layout panes pro-
vide similar convenience macros. The vertical box
pane arranges its children in a stack from top to
bottom in the order they are listed at creation in
the vertically form. This pane type also supports
inter-element space and “pieces of glue” at arbi-
trary points in the children sequence. In the color
editor frame, the +fill+ “glue” is used to absorb
all extra space when too much vertical space is al-
located to the vertical box. CLIM also provides a
horizontal box which does the same thing except in
the horizontal direction.

In the horizontally macro in Figure 3, we do not
supply forms to be evaluated directly. Instead, hor-
izontally processes a form wrapped up in a list. The
first list element is a rational number which denotes
the amount of space the pane generated by the fol-
lowing form is allowed to occupy in the resulting
horizontal layout. In our code in Figure 3, hbox-
pane generated from the horizontally macro has a

space requirement on its own. The whole compos-
ite pane is forced to have a size 200 pixels high.

Now we are ready to turn to the gadget panes.
The color editor uses three sliders one for each com-
ponent of RGB. make-color-slider creates all three
sliders that differ by id, initval and label. The first
two variables are handed to make-pane to construct
the slider panes. The remaining initargs for make-
pane are shared across all three entities. To deco-
rate each slider-pane with a proper label, each of
them is wrapped up in a label-pane via the labelling
convenience macro.

The slider gadget protocol defines two callback
functions: drag-callback is repeatedly invoked while
the slider is being dragged by the user, and value-
change-callback is invoked when the slider is re-
leased in a new location. Notice that this speci-
fication is sufficiently abstract to allow a variety of
different look and feels for a slider. For example,
no guarantee is made as to whether the mouse but-
ton is held down during dragging, or whether the
mouse button is pressed once to start and again to
stop dragging.

We use the gadget id to distinguish between the
red, green and blue slider in the callback code. We
could use three different callback functions here,
but such callbacks would have much more similar-
ities than differences, thus we do not do that here.
Instead, we distinguish the gadget by their id.

The drag-callback method resets the background
of drag-feedback-pane and delegates its redrawing
to redisplay-frame-pane, while value-change-callback
does the same for the frame’s current color pane.
These methods use the id argument of the gadget
to determine which color component was changed.

The color editor frame uses the :menu-bar op-
tion to indicate that a menu-bar should be added
to the application frame. Frame commands de-
fined with :menu t are accessible from the menu-
bar. In this example, we define only one command
named com-quit which is presented as “Quit” to
the user. com-quit is defined via define-color-editor-
command. This macro is generated automatically
along define-application-frame from the application
frame’s name. com-quit simply closes the applica-
tion frame causing the termination of the frame’s
top-level-loop. In the next example, commands will
be explored in greater detail.

We can invoke the color-editor with the regu-
lar run-top-level-frame/make-application-frame com-

10

(de fun make−co lo r− s l i de r (i d i n i t v a l l a b e l)
(l a b e l l i n g (: l a b e l l a b e l)

(make−pane ’ : s l i d e r : i d i d : o r i e n t a t i o n : h o r i z o n t a l : v a l u e i n i t v a l
: max−value 1 : min−value 0
: d r ag−ca l l back #’ co l o r− s l i d e r−d r agg ed
: va lue−changed−ca l lback #’ co l o r− s l i d e r−va lue−changed)))

(d e f i n e−app l i c a t i o n− f r ame c o l o r− e d i t o r ()
(cur rent−co lo r−pane
drag− feedback−pane
(red : i n i t f o rm 0 . 0)
(g reen : i n i t f o r m 1 . 0)
(b l u e : i n i t f o r m 0 . 0))

(: pane (w i t h− s l o t s (drag− feedback−pane cur rent−co lo r−pane red g reen b l u e)
∗ app l i c a t i o n− f r ame ∗

(v e r t i c a l l y ()
(s e t f cu r rent−co lo r−pane

(make−pane ’ app l i c a t i on−pane : min−height 100 : max−height 100
: background (make−rgb−color r ed g reen b l u e)))

(h o r i z o n t a l l y (: min−height 200 : max−height 200)
(1/2 (make−co lo r− s l i de r ’ r ed red ”Red”))
(1/4 (make−co lo r− s l i de r ’ g r een g reen ”Green”))
(1/4 (make−co lo r− s l i de r ’ b l u e b l u e ”Blue”)))

+ f i l l +
(s e t f drag− feedback−pane

(make−pane ’ app l i c a t i on−pane : min−height 100 : max−height 100
: background (make−rgb−color r ed g reen b l u e))))))

(: menu−bar t))

(de fun co l o r− s l i d e r−d r agg ed (s l i d e r v a l u e)
(w i t h− s l o t s (drag− feedback−pane red g reen b l u e) ∗ app l i c a t i o n− f r ame ∗

(s e t f (medium−background drag− feedback−pane)
(e ca s e (gadget− id s l i d e r)

(r ed (make−rgb−color v a l u e g reen b l u e))
(g reen (make−rgb−color r ed v a l u e b l u e))
(b l u e (make−rgb−color r ed g reen v a l u e))))

(red i sp lay− f rame−pane ∗ app l i c a t i o n− f r ame ∗ drag− feedback−pane)))

(de fun co l o r− s l i d e r−va lue−changed (s l i d e r new−value)
(w i t h− s l o t s (cur rent−co lo r−pane red g reen b l u e) ∗ app l i c a t i o n− f r ame ∗

; ; The gadget− id symbols match the s l o t names in co lo r−ed i t o r
(s e t f (s l o t− v a l u e ∗ app l i c a t i o n− f r ame ∗ (gadget− id s l i d e r)) new−value)
(s e t f (medium−background cur rent−co lo r−pane)

(make−rgb−color r ed g reen b l u e))
(red i sp lay− f rame−pane ∗ app l i c a t i o n− f r ame ∗ cur rent−co lo r−pane)))

(def ine−color−editor−command (com−quit : name ”Quit” : menu t) ()
(f rame−ex i t ∗ app l i c a t i o n− f r ame ∗))

Figure 3: Color Editor

11

(d e f i n e−app l i c a t i o n− f r ame draw−frame ()
((l i n e s : a c c e s s o r l i n e s : i n i t f o r m n i l) ; ; l i n e s o f drawing
(s t r i n g s : a c c e s s o r s t r i n g s : i n i t f o rm n i l)) ; ; t e x t s o f drawing

(: panes (draw−pane (make−pane ’ draw−pane))
(i n t e r a c t o r : i n t e r a c t o r))

(: l a y o u t s (d e f a u l t− d e f a u l t (v e r t i c a l l y ()
draw−pane
i n t e r a c t o r))

(: menu−bar t)
(: command−definer t)
(: t o p− l e v e l (de fau l t− f r ame− top− l e ve l)))

(d e f c l a s s draw−pane
(standard−extended− input−st ream ; must have precedence over basic−pane
bas ic−pane
permanent−medium−sheet−output−mixin)

())

(defmethod hand l e− r epa i n t ((pane draw−pane) r e g i o n)
(w i th−app l i ca t i on− f r ame (frame)

(cal l−next−method) ; Paints the background
(d o l i s t (l i n e (l i n e s f rame))

(draw− l i ne pane (ca r l i n e) (cd r l i n e)))
(d o l i s t (p a i r (s t r i n g s f rame))

(draw−text pane (cd r p a i r) (ca r p a i r)))))

Figure 4: define-application-frame for draw-frame

bination.

(run−top− l eve l− f rame
(make−appl icat ion− f rame ’ c o l o r− e d i t))

5.2 A simple drawing application

Next in our show case, we have a simple drawing
application that draws lines and inserts text inter-
actively. Our simple drawing program defines com-
mands for various drawing operations and binds
specific input events to these commands.

The application frame is defined in Figure 4. A
different approach is used to generate the pane hier-
archy. Instead of mixing the layout and pane infor-
mation, we used the :panes keyword to list all panes
that should be available in frame layouts. The :lay-
outs keyword combines them into several layouts. It
is possible to define multiple layouts with this op-
tion. We define two simple layouts, default-layout
and alternative.

There are two options to define-application-frame
that we have not seen before, :command-definer and

:top-level (both with there defaults). :command-
definer is used to specify a name for a command-
defining macro for this frame class. Passing t to this
option (its default) generates a command definer
named define-<frame-name>-command. We can use
the command-defining macro as convenience macro
for define-command which is used to define frame
commands. We will see them in action before long.
:top-level specifies a special form that is used as top
level command loop. The top level is responsible
for dequeuing and executing commands that have
been invoked by the user. This loop is to a appli-
cation frame what the REPL is to a terminal.

This is the first example that does not use clim-
stream-pane (or one of its descendant) as pane
class.14 Instead, we compose our own drawing pane
using standard-extended-input-stream, basic-pane
and permanent-medium-sheet-output-mixin. The
first class is used to provide the application pro-

14When using McCLIM, we have to do this as there are
bugs in the behavior of clim-stream-pane that have not been
fixed yet.

12

(define−draw−frame−command (com−draw−add−string : menu t : name t)
((s t r i n g ’ s t r i n g) (x ’ i n t e g e r) (y ’ i n t e g e r))

(push (cons (make−point x y) s t r i n g)
(s t r i n g s ∗ app l i c a t i o n− f r ame ∗))

(update−draw−pane))

(define−draw−frame−command (com−draw−add−line : menu t : name t)
((x1 ’ i n t e g e r) (y1 ’ i n t e g e r) (x2 ’ i n t e g e r) (y2 ’ i n t e g e r))

(w i t h− s l o t s (l i n e s) ∗ app l i c a t i o n− f r ame ∗
(push (cons (make−point x1 y1) (make−point x2 y2))

l i n e s))
(update−draw−pane))

(define−draw−frame−command (com−draw−clear : menu t : name t) ()
(w i t h− s l o t s (l i n e s s t r i n g s) ∗ app l i c a t i o n− f r ame ∗

(s e t f l i n e s n i l s t r i n g s n i l))
(update−draw−pane))

; ; Aux i lary Method
(de fun update−draw−pane ()

(r e pa i n t− s h e e t (find−pane−named ∗ app l i c a t i o n− f r ame ∗ ’ draw−pane) +eve rywhe re +))

Figure 5: Commands for draw-frame

grammer with stream properties for the draw-
pane that are required for the convenience macro
tracking-pointer. basic-pane is responsible for han-
dling all requests belonging to the sheet and pane
protocols in a standard manner. The last class is
a mixin to tag the pane as permanently visible on
screen during its instances’ lifetime. Most static
user interfaces use this mixin. Notice that McCLIM
is sensible to the order of the superclasses.15

For draw-pane, the handle-repaint method shown
in Figure 4 is straight forward. It delegates back-
ground filling to the next less specific method and
then iterates through the lines and strings paint-
ing them. Here, we implicitly defined the format of
the lines slot and the strings slot of the application
frame class. The elements of the list stored in lines
are pairs of points, namely the start and end point
for a line. In strings, we store the text’s position as
the first element of a cons and the text as its cdr.

Figure 5 shows the command definitions. We
have commands for adding a text string, for adding
a line and resetting the draw pane. After every
command, we update the drawing pane via the aux-

15All stream class like standard-extended-input-stream
must be listed before basic-pane. Otherwise, there is no
stream handling facilities available.

iliary method update-draw-pane.16

At this point, we can actually use the applica-
tion; although not very conveniently. The interac-
tor pane can be used to invoke one of three com-
mands, either by typing the complete command in-
cluding all its parameters or by typing only the
command name, then a dialog queries the user for
the missing command argument. Clicking on the
menu bar entries is also possible. Also in this case,
the user is queried for the missing arguments.

But drawing by typing coordinates is not con-
venient. Therefore, we attach these commands
to other user interactions. Figure 6 defines input
methods for pointer button presses as well as key
presses on the draw pane. Both handlers invoke
the respective tracking function that uses tracking-
pointer to bypass the regular input distribution
channels and to dispatch events to user defined han-
dlers.

For pointer-button-press-event, the input loop
manages a “rubber-banding” line. The :pointer-

16An experienced CLIM programmer would define a
display-function for draw-pane. These function is run when-
ever a command was executed causing the display pane to be
updated with any changes. But we will save this technique
for later examples.

13

(defmethod hand le−event ((pane draw−pane) (even t po in te r−but ton−pres s−event))
; ; S t a r t l i n e t r a c k i n g when l e f t po in t e r bu t ton i s pres sed
(when (e q l (po in te r−event−button even t) +po i n t e r− l e f t−bu t t on+)

(t rack− l i n e−draw ing pane
(po inte r−event−x even t)
(po inte r−event−y even t))))

(defmethod hand le−event ((pane draw−pane) (even t key−press−event))
(when (keyboard−event−characte r even t)

(mu l t i p l e−va lue−b ind (x y) (s t r e am−po i n t e r−po s i t i on pane)
; ; S t a r t wi th empty s t r i n g , as a key r e l e a s e event w i l l be r e c e i v ed anyway
(t rack− text−drawing pane ”” x y)))

(update−draw−pane))

(de fun t rack− l i n e−draw ing (pane s t a r t x s t a r t y)
(l e t ((l a s t x s t a r t x)

(l a s t y s t a r t y))
(with−drawing−opt ions (pane : i n k +f l i p p i n g− i n k +)

(draw− l i ne ∗ pane s t a r t x s t a r t y l a s t x l a s t y)
(t r a c k i n g−po i n t e r (pane)

(: po in te r−mot ion (&key window x y)
(draw− l i ne ∗ pane s t a r t x s t a r t y l a s t x l a s t y) ; d e l e t e o l d
(draw− l i ne ∗ pane s t a r t x s t a r t y x y) ; draw new
(s e t q l a s t x x l a s t y y))

(: po i n t e r−bu t t on− r e l e a s e (&key even t x y)
(when (e q l (po in te r−event−button even t) +po i n t e r− l e f t−bu t t on+)

(draw− l i ne ∗ pane s t a r t x s t a r t y l a s t x l a s t y)
(execute−frame−command ∗ app l i c a t i o n− f r ame ∗

‘ (com−draw−add−line , s t a r t x , s t a r t y , x , y))
(return− f rom t rack− l i n e−draw ing n i l)))))))

(de fun t rack− text−drawing (pane c u r r e n t− s t r i n g cur rent−x cur rent−y)
(t r a c k i n g−po i n t e r (pane)

(: po in te r−mot ion (&key window x y)
; ; We can ’ t use f l i p p i n g ink f o r t e x t , hence redraw .
(hand l e− r epa i n t pane +eve rywhe r e+)
(s e t q cur rent−x x cur rent−y y)
(draw−text∗ pane c u r r e n t− s t r i n g x y))

(: keyboard (&key g e s t u r e)
(when (and (typep g e s t u r e ’ key− r e l ea se−event)

(keyboard−event−characte r g e s t u r e))
(s e t f c u r r e n t− s t r i n g

(conca t ena t e ’ s t r i n g
c u r r e n t− s t r i n g
(s t r i n g (keyboard−event−characte r g e s t u r e))))

(hand l e− r epa i n t pane +eve rywhe re+)
(draw−text∗ pane c u r r e n t− s t r i n g cur rent−x cur rent−y)))

(: po i n t e r−bu t t on− r e l e a s e (&key even t x y)
(when (e q l (po in te r−event−button even t) +po i n t e r− l e f t−bu t t on+)

(execute−frame−command ∗ app l i c a t i o n− f r ame ∗
‘ (com−draw−add−string , c u r r e n t− s t r i n g , x , y))

(return− f rom track− text−drawing n i l)))))

Figure 6: User Interfaces

14

motion is invoked whenever the mouse pointer is
moved by the user. The code attached to :pointer-
motion clears line already drawn and draws a new
line with the new pointer position. It can easily
undraw the old line by the using the special ink
+flipping-ink+. When the user confirms the line by
releasing the pointer button, a command to the ap-
plication is synthesized via execute-frame-command
supplying all required parameters.

Similarly, we provide such an input facility for
text input. Whenever the user hits a key in the
draw-pane, the respective handle-event calls track-
text-drawing which attaches the character entered
to the mouse pointer. Similarly to the rubber-
banding line, the user can move the around this
character while he is free to append additional
string characters by additional key presses. He can
confirm the text position with a mouse click caus-
ing a command to be dispatched to the application
frame adding the text to the application frame per-
manently.

As each of these methods invoke execute-frame-
command passing in a special command invocation
form, this naturally leads to code separation of how
a command is invoked (menu-bar click, click on
draw-pane or typing in the interactor pane) and
the code for command execution (code bodies of
define-command).

You may notice that there are issue with redraw-
ing with this example in McCLIM. Unfortunately,
this has not been fixed before the release of this
article.

6 High Level Facilities

In this section, we explain a number of higher
level facilities provided by CLIM, including output
recording, formatted output, presentations, context
sensitive input, and command processors.17 We il-
lustrate these facilities in two examples: a directory
lister and a simple schedule browser.

Output Recording Many of the higher level fa-
cilities in CLIM are based on the concept of out-

17Many of these facilities are derived from work done
at Symbolics on the Dynamic Windows (DW) project for
Genera[Sym]. See [SM] for more detailed information on the
motivations and design details behind DW. Many of the orig-
inal contributers to DW have participated in the redesign of
these facilities for CLIM.

put recording. The CLIM output recording facil-
ity is simply a mechanism wherein a window re-
members all of the output that has been performed
on it. This output history (stored basically as a
display list) can be used by CLIM for several pur-
poses. For example, the output history can be used
to automatically support window contents refresh-
ing (or “damage repaint” events). The application
programmer has considerable control over the out-
put history. Output recording can be enabled or
suspended, and the history itself can be cleared or
rearranged.

Output records can be nested, thereby forming
their own hierarchy. The leaves of this tree are
typically records that represent a piece of output,
say the result of a call to draw-rectangle or write-
string. The intermediate nodes typically provide
additional semantics to the tree, such as marking
a subtree of nodes as resultant output of one par-
ticular phase of an application, for instance row
and column formatting information. Chapter 16 in
[SM05] has all the details.

Output Formatting CLIM provides a conve-
nient table and graph formatting facility, which is
built on top of the output recording facility. The
key to these formatting tools (as opposed to, say,
format’s X directive) is that they dynamically com-
pute the formatting parameters based on the actual
size of the application-generated output.

The application programmer uses these tools by
wrapping any piece of output-producing code with
advisory macros that help the system determine the
structure of the output.

For example, start with a simple output function
that shows some information about the packages in
the Lisp environment:

(de fun show−package− info (st ream)
(d o l i s t (package (l i s t− a l l−p a c k a g e s))

(w r i t e− s t r i n g (package−name package)
st ream)

(w r i t e− s t r i n g ” ” s t ream)
(format st ream ”˜D”

(count−package−symbols
package))

(t e r p r i s t ream)))

Any attempt to fix this function to produce tab-
ular output by building in a certain fixed spacing
between the package name and symbol count will

15

(de fun show−packages (s t ream)
(f o rma t t i n g− t ab l e (s t ream)

(d o l i s t (package (l i s t− a l l−p a c k a g e s))
(formatt ing− row (st ream)

; ; The f i r s t column conta ins the package name
(f o rma t t i n g− c e l l (s t ream)

(w r i t e− s t r i n g (package−name package) st ream))

; ; The second co l o r conta ins the symbol count , a l i gn ed wi th the r i g h t
; ; edge o f the column
(f o rma t t i n g− c e l l (s t ream : a l i gn−x ’ : r i g h t)

(fo rmat st ream ”˜D” (count−package−symbols−package)))))))

Figure 7: An output function that uses table formatting.

either get caught by an unexpectedly long package
name, or will have to reserve way to much space
for the typical case. In CLIM, we can use the code
in Figure 7 to produce a neatly formatted table for
any set of package names.

Presentations The next step up from preserv-
ing the mere physical appearance of output done to
a window is to preserve its semantics. For exam-
ple, when an application displays a Lisp pathname
on the screen via (format t ”˜A” path), the string
“/clim/demo/cad-demo.lisp” may appear. To the
user this string has obvious semantic meaning; it
is a pathname. However, to Lisp and the underly-
ing system it is just a text string. Fortunately, in
many cases the semantics can be recovered from
the string. Thus the power of the various tex-
tual cut-and-paste mechanisms supported by con-
temporary computer systems. However, it is possi-
ble to improve upon the utility of this lowest com-
mon denominator facility (i.e. squeezing everything
through its printed representation) by remembering
the semantics of the output as well as its appear-
ance. This is the idea behind presentations.

A presentation is a special kind of output record
that maintains the link between screen output and
the Lisp data structure that it represents. A pre-
sentation remembers three things: the displayed
output by capturing a subtree of output records,
the Lisp object associated with the output, and
the presentation type of the output. By maintain-
ing this back pointer to the underlying Lisp data
structure, the presentation facility allows output to
be reused at a higher semantic level.

An application can produce semantically tagged
output by calling the CLIM function present. For
example, to display the pathname referred to above
as a presentation, the application would execute:

(p r e s e n t path ’ pathname)

present captures the resulting output and the path-
name object in a presentation of type ’pathname.

Presentation Types CLIM defines a set of pre-
sentation types, which are arranged in a super-
type/subtype lattice like the CL types. In fact, the
presentation type hierarchy is an extension of the
CL type hierarchy. The reason that this extended
type system is needed is that the CL type system
is overloaded from the UI perspective. For exam-
ple, the integer 72 might represent a heart rate in
one application and a Fahrenheit temperature in
another, but it will always just be an integer to
Lisp.

The application programmer can define the UI
entities of the application by defining presentation
types, thus extending the presentation type library.
By defining a presentation type, the programmer
can centralize all of the UI aspects of the new type
in one place, including output appearance and in-
put syntax. As an example, CLIM defines a path-
name presentation type that defines how a path-
name is displayed and how one is input. The path-
name input side provides pathname completion and
possibilities-display features. By defining this be-
havior in one place and using it in all applications
that need to display or read pathnames, CLIM helps
build consistent user interfaces.

16

Note that in the pathname output example given
above present invokes the standard pathname dis-
player defined by the presentation type. However,
since the presentation facility is simply based on
the output recording facility, presentation seman-
tics can be given to any output. The following ex-
ample shows how the pathname object could be
associated with some graphics that were displayed
on the screen.

(w i th−output−as−presentat ion
(: o b j e c t path
: type ’ pathname
: s t ream s)

(d raw− r ec tang l e ∗ s 0 0 30 30))

Context-Dependent Input Once output
is semantically-tagged, it can be reused as
semantically-meaningful input. To achieve this,
the application does not only have to tag its out-
put but it also has to provide additional semantic
information when doing input operations. For
instance, whenever a pathname is required, the
program has to use a special method in contrast
to reading a string of characters.

The counterpart to present is accept. It is used
to establish an input context. The input context is
a presentation type that is appropriate for the cur-
rent input point. For example, if the application
requires the user to input a pathname, it can trig-
ger an appropriate prompt, input parser and input
context with:

(accep t ’ pathname : s t ream s)

Typically, this invokes the input reader (or parser)
that was defined for the pathname type and es-
tablishes an input context that indicates that it is
waiting for a pathname.

Once the input context is established, CLIM au-
tomatically makes any appropriate existing output
available to the user via mouse gestures. After call-
ing accept as shown above, the user can move the
mouse over any presentation that is of type path-
name (or is a subtype of pathname), click on it, and
the pathname object underlying the presentation is
returned as the value of the call to accept.

Command Processors CLIM promotes the sep-
aration of command execution code and command
invocation code. The command facility aids this

task. Every application frame can define applica-
tion commands that are accessible via various in-
put methods. The most common are clicking on
the command’s entry in the menu bar or a con-
text menu, typing the command in the interactor
pane, or the application dispatches a command to
itself (maybe triggered by other ways of user input
or network interactions, etc.). The latter case is
seen in track-line-drawing and track-text-drawing of
the draw-frame example. These methods generate
“Add Line” and “Add String” commands as the
result of event-handling on the draw-pane.

A command has a name specified as string and
a set arguments specified as presentation types.
Looking back at the command “Add String” of
draw-frame, we see that this command takes a
string and two integer as arguments. This type
information is useful for partial command parsing.
Assume the user clicks on a menu entry or types
only the command name in the interactor. CLIM

notices that there are arguments missing in the
command and requests the missing ones in a di-
alog via calls to accept. Mentioned early, accept
establishes an input context and so the user is able
to fill the missing argument with clicks on appro-
priate visible output objects. Also keyboard users
will find semantically-tagged input methods conve-
nient as implementations of presentation types can
provide the user with a completion facility.

In addition, the command processor is extensi-
ble by application programmers. For example, the
command processor can be extended to support a
“noun then verb” interaction style, where the user
can first click on a displayed presentation and then
invoke a command that is defined to take an argu-
ment of the selected presentation type.

6.1 A Directory Browser

The dirlist-frame application is a very simple-
minded file system browser using presentation
types. It defines two panes, an output pane to dis-
play directory contents and an input pane to han-
dle user typein. For the output pane, the applica-
tion defines a display function. dirlist-display-files
works in conjunction with the top level command
loop. Per default, the command loop calls all dis-
play functions after a command was processed to
make all changes in the application’s data struc-
tures visible that the command execution might

17

(d e f i n e−app l i c a t i o n− f r ame f i l e−b r ow s e r ()
((a c t i v e− f i l e s : i n i t f o r m n i l : a c c e s s o r a c t i v e− f i l e s))
(: panes
(f i l e−b r ow s e r : a p p l i c a t i o n

: d i s p l a y− f u n c t i o n ’ (d i r l i s t− d i s p l a y− f i l e s)
; ; Ca l l the d i sp l ay− f unc t i on whenever the command
; ; loop makes a ‘ ‘ f u l l− c y c l e ’ ’
: d i s p l a y− t ime : command−loop)

(i n t e r a c t o r : i n t e r a c t o r))
(: l a y o u t s (d e f a u l t (v e r t i c a l l y ()

f i l e−b r ow s e r
i n t e r a c t o r))))

(defmethod d i r l i s t− d i s p l a y− f i l e s ((f rame f i l e−b r ow s e r) pane)
; ; Clear o ld d i s p l a y ed e n t r i e s
(c l ea r−output− r e co rd (s t ream−output−h i s to ry pane))

(d o l i s t (f i l e (a c t i v e− f i l e s f rame))
; ; Ins t ead o f wr i t e− s t r ing , we use pre sen t so t ha t the l i n k to
; ; o b j e c t f i l e and the semantic in format ion t ha t f i l e i s
; ; pathname i s r e t a ined .
(p r e s e n t f i l e ’ pathname : st ream pane)
(t e r p r i pane)))

(def ine− f i le−browser−command (com−ed i t−d i r ec to ry : name ”Edit Di rec to ry ”)
((d i r ’ pathname))
(l e t ((d i r (make−pathname : d i r e c t o r y (pathname−d i rec to ry d i r)

: name : w i l d : t ype : w i l d : v e r s i o n : w i l d
: d e f a u l t s d i r)))

(s e t f (a c t i v e− f i l e s ∗ app l i c a t i o n− f r ame ∗)
(d i r e c t o r y d i r))))

(de f ine−presentat ion− to−command− t rans la to r pathname−to−edit−command
(pathname ; source presen ta t ion− t ype
com−ed i t−d i r ec to ry ; target−command
f i l e−b r ow s e r ; command−table
: g e s t u r e : s e l e c t ; use t h i s t r a n s l a t o r f o r po in t e r c l i c k s
: documentat ion ”Edit t h i s path”) ; used in con t ex t menu

(o b j e c t) ; argument L i s t
(l i s t o b j e c t)) ; arguments f o r target−command

(defmethod adopt−frame : a f t e r (frame−manager (f rame f i l e−b r ow s e r))
(execute−frame−command frame

‘ (com−ed i t−d i r ec to ry , (make−pathname : d i r e c t o r y ’ (: a b s o l u t e)))))

Figure 8: File Browser

18

have caused. When all display functions have up-
dated their panes, the command loop displays a
prompt in the interactor18 and waits for the next
command.

The dirlist-display-files display function iterates
over the contents of the current directory displaying
the files one by one. Each output line is produced
by a call to present. present creates the association
between the text lines on the screen and the Lisp
pathname objects.

draw-frame has a single command “Edit direc-
tory”. The command’s body interprets the path-
name that it receives as a directory, obtaining a
list of the files contained therein. The command
simply updates the application variable active-files
with the new list.

The CLIM presentation substrate supports a gen-
eral concept of presentation type translation. This
translation mechanism can be used to map objects
of one type into a different presentation type, if
appropriate. For example, it might be possible
to satisfy an input request for a pathname by se-
lecting a computer user’s login ID and returning
the pathname of the user’s home directory. This
would be accomplished by defining a translator
from a user-id presentation type to the pathname
type. The translator would consult the system’s
user database to retrieve the home directory infor-
mation to achieve its conversion task.

The command loop of an application frame is
regularly requesting commands for processing and
it uses accept for its request. Hence, an input
context for reading an object with the presenta-
tion type command is established and all objects
that can be used as commands will become click-
able on screen. Here, we can define a presentation-
to-command translator that translates a pathname
into the edit directory command.

The presentation-to-command translator in Fig-
ure 8 is very simple. It has the name pathname-to-
edit-command and converts the presentation type
pathname to the command com-edit-directory for
the command table of file-browser. The gesture op-
tion specifies that it works with the select gesture,
while the string supplied to :documentation is used
in the context menu.

This command translator has little work to do.
The body of the translator has to return a list of

18Might be omitted when there is no interactor pane

arguments that are handed to the command com-
edit-directory. But we do not need to any conversion
of the supplied object, as it is already a pathname.
Thus, the received object is wrapped in a list and
handed back to the caller which will call com-edit-
directory with the supplied objects.

A simple trick is used to dispatch an initial com-
mand to the application frame. An after-method is
provided for adopt-frame which runs after the frame
manager has adopted the frame for displaying. This
is different for an after-method on initialize-instance
as an after-method on adopt-frame runs later, when
the application frame instance has already a com-
mand queue associated with it.

Since this application was defined with an in-
teractor pane for user input, the user can invoke
the sole command by typing its name, “Edit Di-
rectory.” Here, CLIM supports for automatic com-
mand completion becomes visible. Only the first
letter has to be typed followed by the complete ac-
tion (usually Tab) and the command completion fa-
cility will complete the input to “Edit Directory”.
At this point, the CLIM command loop will be-
gin reading the arguments for that command, and
will automatically enter a pathname input context.
Thus, the user can fill in the required argument ei-
ther by typing a pathname, or by clicking on one
of the pathnames visible in the display pane.

6.2 Schedule Example

In this example, we build a simple appointment
browser. Since the user of this application will fre-
quently be dealing with the days of the week, we
start by defining a new presentation type weekday.
This simple presentation type, shown in Figure 9,
represents a day of the week as a number from 0 to
6. Each day number is associated with an abbrevi-
ated day name, “Mon,” “Tue,” etc.

The weekday presentation type defines two ba-
sic pieces of behavior: how a weekday is dis-
played, and how it is read as input. The macro
define-presentation-method is intended for specializ-
ing methods on presentation types. Via this macro,
we define a printer and a parser function for the
type weekday. As is the case with most presenta-
tion types, the printer and parser are duals. That
is, the printer, when given an object to print, pro-
duces output that the parser can interpret to arrive
back at the original object. Not in every case the

19

(d e f v a r ∗ days ∗ #(”Sun” ”Mon” ”Tue” ”Wed” ”Thu” ” Fr i ” ”Sat”))

; ; A l i s t o f day number and appointment s t r i n g s
(d e f v a r ∗ t e s t−data ∗

’ ((0) (1 ” Dent i s t ”) (2 ” S t a f f meeting”) (3 ”Performance Evaluat ion ” ”Bowling”)
(4 ” Inte rv i ew at ACME” ”The Simpsons”) (5 ”TGIF”) (6 ” S a i l i n g ”)))

(d e f i n e−p r e s en t a t i o n− t y p e weekday ())

(de f ine−pre senta t i on−method accep t
((type weekday) st ream (v iew tex tua l−v i ew) &key)

(v a l u e s (comp le t ing− f rom− sugges t ions (s t ream)
(dot imes (i 7)

(s ugge s t (a r e f ∗ days ∗ i) i)))))

(de f ine−pre senta t i on−method p r e s e n t
(daynumber (type weekday) st ream (v iew tex tua l−v i ew) &key)

(w r i t e− s t r i n g (a r e f ∗ days ∗ daynumber) s t ream))

(d e f i n e−app l i c a t i o n− f r ame s c h e d u l e r ()
((appo in tments : i n i t a r g : appo in tments : i n i t f o r m ∗ t e s t−data ∗)
(cur rent−day : i n i t f o r m n i l))

(: panes (s c h e d u l e r−d i s p l a y : a p p l i c a t i o n
: d i s p l a y− f u n c t i o n ’ (d i sp l a y−appo in tment s))

(i n t e r a c t o r : i n t e r a c t o r))
(: l a y o u t s (d e f a u l t− l a y o u t

(v e r t i c a l l y ()
s c h e d u l e r−d i s p l a y
i n t e r a c t o r))

(a l t e r n a t i v e− l a y o u t
(h o r i z o n t a l l y ()

i n t e r a c t o r
s c h e d u l e r−d i s p l a y)))

(: menu−bar t))

; ; ; Chooses which day to see in d e t a i l ,
(def ine−scheduler−command (com−select−day : name t)

((day ’ weekday : g e s t u r e : s e l e c t))
(w i t h− s l o t s (cur rent−day) ∗ app l i c a t i o n− f r ame ∗

(s e t q cur rent−day day)))

; ; ; Show week ly summary .
(def ine−scheduler−command (com−show−summary : name t) ()

(w i t h− s l o t s (cur rent−day) ∗ app l i c a t i o n− f r ame ∗
(s e t q cur rent−day n i l)))

(def ine−scheduler−command (com−toggle− layout : name t) ()
(w i t h−acce s so r s ((l a y o u t f rame−cur rent− l ayout)) ∗ app l i c a t i o n− f r ame ∗

(s e t f l a y o u t (i f (eq l a y o u t ’ d e f a u l t− l a y o u t)
’ a l t e r n a t i v e− l a y o u t

’ d e f a u l t− l a y o u t))))

Figure 9: Scheduler: application frame, presentation type and commands

20

; ; ; Complex d i s p l a y func t ion , shows two comp l e t e l y d i f f e r e n t d i s p l a y s .
(defmethod d i sp l a y−appo in tment s ((f rame s c h e d u l e r) pane)

(c l ea r−output− r e co rd (s t ream−output−h i s to ry pane))
(w i t h− s l o t s (cur rent−day appo intments) f rame

(i f (n u l l cur rent−day)
(show−weekly−summary pane appo intments)

(show−appointments pane
cur rent−day
(r e s t (a s s o c cur rent−day appo intments))))))

; ; ; Show a summary o f the week , wi th an appointment count f o r each
; ; ; day . You can see the appointments f o r a s p e c i f i c day by c l i c k i n g on
; ; ; the day name .
(de fun show−weekly−summary (pane appo intments)

(f o rma t t i n g− t ab l e (pane) ; ; Table headings
(formatt ing− row (pane)

(f o rma t t i n g− c e l l (pane)
(w r i t e− s t r i n g ”Day o f week ” pane))

(f o rma t t i n g− c e l l (pane)
(w r i t e− s t r i n g ”number o f appointments ” pane)))

(d o l i s t (day appo intments)
(formatt ing− row (pane)

(f o rma t t i n g− c e l l (pane)
(p r e s e n t (f i r s t day) ’ weekday : s t ream pane))

(f o rma t t i n g− c e l l (pane)
(fo rmat pane ”˜D appointment ˜&”

(l e n g t h (r e s t day))))))))

; ; ; Show d e t a i l e d appointment l i s t f o r day
(de fun show−appointments (pane cur rent−day current−day−appo intments)

; ; Show a l l days at top so you can sw i t ch to another
; ; day wi th one c l i c k .
(dot imes (day 7)

(wi th− text− face (pane (i f (e q l day cur rent−day) ’ : bo ld ’ : roman))
(p r e s e n t day ’ weekday : s t ream pane))

(w r i t e− s t r i n g ” ” pane))
(t e r p r i pane) (t e r p r i pane)
; ; Show a l l the appointments , one per l i n e
(w r i t e− s t r i n g ”Appointments f o r ” pane)
(p r e s e n t cur rent−day ’ weekday : s t ream pane)
(t e r p r i pane) (t e r p r i pane)
(d o l i s t (appo intment current−day−appointments)

(w r i t e− s t r i n g appo intment pane)
(t e r p r i pane)))

Figure 10: Scheduler: display functions

21

parser in accept is needed to return an object of the
requested type, and for simplicity the programmer
might choose not to provide a parser at all.

We took the easy way out with our parser. CLIM

provides a completion facility and instead of read-
ing the day name of the stream and parsing it
into an integer, we provided an exhaustive set of
input to object mappings. The completing-from-
suggestions macro collects all suggestions made by
the parser via suggest. suggest is takes an input
and object as suggestion. In our case, day name
taken from *days* is the input and the number of
the week i is the object. CLIM will match the input
given by the user with the suggestions and in case
of a match will return the corresponding object to
the caller.

We define an application frame for the appoint-
ment browser in Figure 9. The frame defines state
variables to hold the list of appointments and the
current day. This information is kept in slots on
the frame, so that multiple copies of the applica-
tion can be run, each with its own appointment
list. The application represents the appointment
data as an alist containing an entry for each day of
the week, with each entry containing a list of the
appointments for the day. Test data is provided as
a default initform.

Just as in the previous example, the appointment
application defines two panes, an interactor and
an output display pane. The appointment applica-
tion defines two commands. The “Show Summary”
command resets the display back to the weekly
summary mode by setting the current-day slot to
nil. The “Select Day” command sets current-day to
the value of an argument that is specified to be a
weekday. This presentation type specification al-
lows the command processor to make all presented
weekday active when it is filling in this argument, as
well as, provide completion assistance to the user.

The command “Select Day” has the following ar-
gument specification:

((day ’ weekday : g e s t u r e : s e l e c t))

It takes an argument day of type weekday. Up until
now, our command arguments have looked simi-
larly to specialized lambda lists, but next to the
type information the arguments of commands are
also allowed to have various keyword-value pairs
for selection further options. In this case, we sup-
plied the value :select for the option :gesture. The

macro define-command parses this keyword-value
pair and generate a presentation translator. More
precisely, a presentation-to-command translator is
defined that is equal in functionality to the one we
have seen in the file-browser example. Whenever a
presentation of the type pathname is selected (e.g.
with pointer clicks) in a command input context, it
is translated into a command invocation of “Select
Weekday”.

Finally, we turn to the display the appoint-
ment information. The display function, display-
appointments, shown in Figure 10, is somewhat
more complex than our earlier example. It can
display two different sets of information: a weekly
summary showing the days of the week and the
number of appointments for each day, or a detailed
description of one day’s appointments.

display-appointments decides which set of infor-
mation to display by examining the application
state variable current-day. The table formatting fa-
cility is used to present the weekly summary infor-
mation neatly organized. The daily appointment
list, by contrast, is displayed using write-string.
Note, however, that whenever a day of the week
is displayed, it is done with a call to present us-
ing the weekday presentation type. This allows the
printed weekdays to be selected either as a com-
mand or as a weekday argument. This example
illustrates how an application with interesting UI
behavior can be constructed from a high-level spec-
ification of its functionality.

7 Conclusion

The series of examples presented in this article il-
lustrate the broad range of functionality provided
by CLIM. The later examples, especially, demon-
strate that complex user interfaces can be built
economically and modularly using CLIM. Many of
the higher level facilities make it possible to sep-
arate the issues involved in designing an applica-
tion’s user interface from the functionality of the
application.

On the other hand, many of these higher level fa-
cilities may not be appropriate for all users. CLIM’s
lower level facilities and clean modularization of
the higher level facilities provide these users with
portable platform and a framework for implement-
ing their own user interface toolkits and frame-

22

works. In addition, CLIM’s use of CLOS to de-
fine explicit, documented protocols provides appli-
cation programmers with the opportunity to cus-
tomize CLIM and support interfaces not anticipated
by the CLIM designers.

A free CLIM implementation is available as Mc-
CLIM. McCLIM only works on X windows at the
moment. An experimental port to Mac OS X
called Beagle is in progress. It can be found on
http://common-lisp.net/project/mcclim/.

Acknowledgments

Original article CLIM represents the cooper-
ative effort of individuals at several companies.
These individuals include Jim Veitch, John Irwin,
and Chris Richardson of Franz; Richard Lamson,
David Linden, and Mark Son-Bell of ILA; Paul
Wieneke and Zack Smith of Lucid; Scott McKay,
John Aspinall, Dave Moon and Charlie Hornig of
Symbolics; and Gregor Kizcales and John Seely
Brown of Xerox PARC. Mark Son-Bell and Jon L.
White have help us improve this paper.

2006 update Clemens Fruhwirth thanks the de-
velopers for McCLIM for producing a free CLIM

implementation, and especially Robert Strandh for
answering so many questions in conjunction with
McCLIM.

References

[McC] McCLIM. A free clim implementation.

[SM] Michael McMahon Scott McKay,
William York. A presentation man-
ager based on application semantics.

[SM05] Wiliam York Scott McKay. Common lisp
interface manager specification, 2005.

[Sym] Inc Symbolics. Programmer’s reference
manual vol 7: Programming the user in-
terface.

23

